BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11129184)

  • 1. Osteochondral reconstruction of a non-weight-bearing joint using a high-density porous polyethylene implant.
    Weinzweig J; Pantaloni M; Spangenberger A; Marler J; Zienowicz RJ
    Plast Reconstr Surg; 2000 Dec; 106(7):1547-54. PubMed ID: 11129184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous bioactive glass matrix in reconstruction of articular osteochondral defects.
    Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT
    Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agili-C implant promotes the regenerative capacity of articular cartilage defects in an ex vivo model.
    Chubinskaya S; Di Matteo B; Lovato L; Iacono F; Robinson D; Kon E
    Knee Surg Sports Traumatol Arthrosc; 2019 Jun; 27(6):1953-1964. PubMed ID: 30387000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humeral resurfacing arthroplasty: rationale, indications, technique, and results.
    Jensen KL
    Am J Orthop (Belle Mead NJ); 2007 Dec; 36(12 Suppl 1):4-8. PubMed ID: 18264550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The repair response to osteochondral implant types in a rabbit model.
    Frenkel SR; Kubiak EN; Truncale KG
    Cell Tissue Bank; 2006; 7(1):29-37. PubMed ID: 16511662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety of, and biological and functional response to, a novel metallic implant for the management of focal full-thickness cartilage defects: Preliminary assessment in an animal model out to 1 year.
    Kirker-Head CA; Van Sickle DC; Ek SW; McCool JC
    J Orthop Res; 2006 May; 24(5):1095-108. PubMed ID: 16609973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of artificial articular cartilage.
    Oka M; Ushio K; Kumar P; Ikeuchi K; Hyon SH; Nakamura T; Fujita H
    Proc Inst Mech Eng H; 2000; 214(1):59-68. PubMed ID: 10718051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the Anatomic Neck as an Accurate Landmark for Humeral Head Resurfacing Implant Height Placement.
    Chen EJ; Simovitch R; Savoie F; Noel CR
    Bull Hosp Jt Dis (2013); 2015 Dec; 73 Suppl 1():S28-32. PubMed ID: 26631192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study.
    Jackson DW; Lalor PA; Aberman HM; Simon TM
    J Bone Joint Surg Am; 2001 Jan; 83(1):53-64. PubMed ID: 11205859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Repairing porcine knee joint osteochondral defects at non-weight bearing area by autologous BMSC].
    Zhou GD; Wang XY; Miao CL; Liu TY; Zhu L; Liu DL; Cui L; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2004 Jun; 84(11):925-31. PubMed ID: 15329281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation.
    Buckwalter JA; Mankin HJ
    Instr Course Lect; 1998; 47():487-504. PubMed ID: 9571450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of glenohumeral contact pressures and contact areas after posterior glenoid reconstruction with an iliac crest bone graft or distal tibial osteochondral allograft.
    Frank RM; Shin J; Saccomanno MF; Bhatia S; Shewman E; Bach BR; Wang VM; Cole BJ; Provencher MT; Verma NN; Romeo AA
    Am J Sports Med; 2014 Nov; 42(11):2574-82. PubMed ID: 25193887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Craniofacial augmentation with porous polyethylene implants (Medpor: first clinical results].
    Gosau M; Schiel S; Draenert GF; Ihrler S; Mast G; Ehrenfeld M
    Mund Kiefer Gesichtschir; 2006 May; 10(3):178-84. PubMed ID: 16685567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix generation within a macroporous non-degradable implant for osteochondral defects is not enhanced with partial enzymatic digestion of the surrounding tissue: evaluation in an in vivo rabbit model.
    Krych AJ; Wanivenhaus F; Ng KW; Doty S; Warren RF; Maher SA
    J Mater Sci Mater Med; 2013 Oct; 24(10):2429-37. PubMed ID: 23846837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits.
    Wang Z; Li Z; Li Z; Wu B; Liu Y; Wu W
    Acta Biomater; 2018 Nov; 81():129-145. PubMed ID: 30300711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
    Vainieri ML; Wahl D; Alini M; van Osch GJVM; Grad S
    Acta Biomater; 2018 Nov; 81():256-266. PubMed ID: 30273741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoconductivity of porous polyethylene in human skull.
    Tark WH; Yoon IS; Rah DK; Park BY; Kim YO
    J Craniofac Surg; 2012 Jan; 23(1):78-80. PubMed ID: 22337379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological and functional evaluation of a novel pyrolytic carbon implant for the treatment of focal osteochondral defects in the medial femoral condyle: assessment in a canine model.
    Salkeld SL; Patron LP; Lien JC; Cook SD; Jones DG
    J Orthop Surg Res; 2016 Dec; 11(1):155. PubMed ID: 27906096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment of osteochondral defects: chondrointegration of metal implants improves after hydroxyapatite coating.
    Schell H; Zimpfer E; Schmidt-Bleek K; Jung T; Duda GN; Ryd L
    Knee Surg Sports Traumatol Arthrosc; 2019 Nov; 27(11):3575-3582. PubMed ID: 30879107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.