These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1112921)

  • 41. Onset and development of intersegmental projections in the chick embryo spinal cord.
    Oppenheim RW; Shneiderman A; Shimizu I; Yaginuma H
    J Comp Neurol; 1988 Sep; 275(2):159-80. PubMed ID: 2464626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitric oxide and spontaneous motility in chick embryos.
    Sedlácek J
    Sb Lek; 1996; 97(3):303-15. PubMed ID: 9174374
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immunohistochemical study on the development of serotoninergic neurons in the chick: II. Distribution of cell bodies and fibers in the spinal cord.
    Sako H; Kojima T; Okado N
    J Comp Neurol; 1986 Nov; 253(1):79-91. PubMed ID: 3540037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple spontaneous rhythmic activity patterns generated by the embryonic mouse spinal cord occur within a specific developmental time window.
    Yvert B; Branchereau P; Meyrand P
    J Neurophysiol; 2004 May; 91(5):2101-9. PubMed ID: 14724265
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Some notes on the organization of spinal and supraspinal premotor networks for locomotion.
    ten Donkelaar HJ
    Eur J Morphol; 1994 Aug; 32(2-4):156-67. PubMed ID: 7803162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of spontaneous motility in chick embryos. Sensitivity to aminergic transmitters.
    Sedlácek J
    Physiol Bohemoslov; 1977; 26(5):425-33. PubMed ID: 144925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reorganization of the human central nervous system.
    Schalow G; Zäch GA
    Gen Physiol Biophys; 2000 Oct; 19 Suppl 1():11-240. PubMed ID: 11252267
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Effect of a return of motor neurons to spontaneous activity on the multi-innervation of muscular fibers induced in chick embryo by chronic slow-rhythm spinal cord stimulation].
    Renaud D; Le Douarin G
    C R Seances Acad Sci III; 1981 Dec; 293(14):751-3. PubMed ID: 6802449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ethanol influences on the chick embryo spinal cord motor system: analyses of motoneuron cell death, motility, and target trophic factor activity and in vitro analyses of neurotoxicity and trophic factor neuroprotection.
    Heaton MB; Bradley DM
    J Neurobiol; 1995 Jan; 26(1):47-61. PubMed ID: 7714525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Muscle fibre types and innervation of the chick embryo limb following cervical spinal cord removal.
    Laing NG; Lamb AH
    J Embryol Exp Morphol; 1985 Oct; 89():209-22. PubMed ID: 2936860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of the serotonergic system in chick spinal cord during hatching.
    Summers TR; Summers CH; Desan PH; Smock TK
    J Exp Zool; 1991 Mar; 257(3):330-5. PubMed ID: 1706406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Embryonic development of spontaneous motility in chick embryos. Identification of participation of NMDA-mechanism by magnesium ions.
    Sedlácek J
    Sb Lek; 1997; 98(3):185-93. PubMed ID: 9601811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Age-related changes and condition-dependent modifications in distribution of limb movements during embryonic motility.
    Bradley NS
    J Neurophysiol; 2001 Oct; 86(4):1511-22. PubMed ID: 11600617
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo.
    Borday C; Coutinho A; Germon I; Champagnat J; Fortin G
    J Neurobiol; 2006 Oct; 66(12):1285-301. PubMed ID: 16967510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-frequency conditioning electrical stimulation evokes supraspinal independent long-term depression but not long-term potentiation of the spinal withdrawal reflex in rats.
    You HJ; Tjølsen A; Arendt-Nielsen L
    Brain Res; 2006 May; 1090(1):116-22. PubMed ID: 16638604
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of ketamine on the spontaneous motility of chick embryos and its development.
    Sedlácek J
    Physiol Res; 1992; 41(6):445-9. PubMed ID: 1299327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of beta-carboline with chick embryo spontaneous motility.
    Sedlácek J; Hebebrand J; Reichelt H
    Physiol Res; 1992; 41(2):115-20. PubMed ID: 1337469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The development of spontaneous bioelectric activities and strychnine sensitivity during maturation in culture of embryonic chick and rodent central nervous tissues.
    Corner MA; Crain SM
    Arch Int Pharmacodyn Ther; 1969 Dec; 182(2):404-6. PubMed ID: 5371194
    [No Abstract]   [Full Text] [Related]  

  • 59. The development of intersegmental connections in embryonic spinal cord: an anatomic substrate for early embryonic motility.
    Singer HS; Skoff RP; Price DL
    Brain Res; 1978 Feb; 141(2):197-209. PubMed ID: 626898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spinal and supraspinal monoamine-sensitive components of embryonic motility.
    Sedlácek J
    Physiol Bohemoslov; 1979; 28(2):185-8. PubMed ID: 37535
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.