These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 11129432)
21. The light chain-binding domain of the smooth muscle myosin heavy chain is not the only determinant of regulation. Trybus KM; Naroditskaya V; Sweeney HL J Biol Chem; 1998 Jul; 273(29):18423-8. PubMed ID: 9660810 [TBL] [Abstract][Full Text] [Related]
22. Cloning and characterization of the scallop essential and regulatory myosin light chain cDNAs. Goodwin EB; Szent-Gyorgyi AG; Leinwand LA J Biol Chem; 1987 Aug; 262(23):11052-6. PubMed ID: 2440882 [TBL] [Abstract][Full Text] [Related]
23. Primary peptide sequences from squid muscle and optic lobe myosin IIs: a strategy to identify an organelle myosin. Medeiros NA; Reese TS; Jaffe H; Degiorgis JA; Bearer EL Cell Biol Int; 1998; 22(2):161-73. PubMed ID: 9878103 [TBL] [Abstract][Full Text] [Related]
24. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Houdusse A; Silver M; Cohen C Structure; 1996 Dec; 4(12):1475-90. PubMed ID: 8994973 [TBL] [Abstract][Full Text] [Related]
25. A folded (10 S) conformer of myosin from a striated muscle and its implications for regulation of ATPase activity. Ankrett RJ; Rowe AJ; Cross RA; Kendrick-Jones J; Bagshaw CR J Mol Biol; 1991 Jan; 217(2):323-35. PubMed ID: 1825121 [TBL] [Abstract][Full Text] [Related]
26. Catchin, a novel protein in molluscan catch muscles, is produced by alternative splicing from the myosin heavy chain gene. Yamada A; Yoshio M; Oiwa K; Nyitray L J Mol Biol; 2000 Jan; 295(2):169-78. PubMed ID: 10623517 [TBL] [Abstract][Full Text] [Related]
27. Human fast skeletal myosin light chain 2 cDNA: isolation, tissue specific expression of the single copy gene, comparative sequence analysis of isoforms and evolutionary relationships. Sachdev S; Raychowdhury MK; Sarkar S DNA Seq; 2003 Oct; 14(5):339-50. PubMed ID: 14756420 [TBL] [Abstract][Full Text] [Related]
28. A mechanical study of regulation in the striated adductor muscle of the scallop. Simmons RM; Szent-Györgyi AG J Physiol; 1985 Jan; 358():47-64. PubMed ID: 3920389 [TBL] [Abstract][Full Text] [Related]
29. A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. Sohn RL; Vikstrom KL; Strauss M; Cohen C; Szent-Gyorgyi AG; Leinwand LA J Mol Biol; 1997 Feb; 266(2):317-30. PubMed ID: 9047366 [TBL] [Abstract][Full Text] [Related]
30. Structural differences in the motor domain of temperature-associated myosin heavy chain isoforms from grass carp fast skeletal muscle. Tao Y; Wang SY; Liang CS; Fukushima H; Watabe S Comp Biochem Physiol B Biochem Mol Biol; 2009 Oct; 154(2):248-54. PubMed ID: 19567272 [TBL] [Abstract][Full Text] [Related]
31. Isolation of the regulatory domain of scallop myosin: role of the essential light chain in calcium binding. Kwon H; Goodwin EB; Nyitray L; Berliner E; O'Neall-Hennessey E; Melandri FD; Szent-Györgyi AG Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4771-5. PubMed ID: 2352947 [TBL] [Abstract][Full Text] [Related]
32. Primary structure of myosin heavy chain from fast skeletal muscle of Chum salmon Oncorhynchus keta. Iwami Y; Ojima T; Inoue A; Nishita K Comp Biochem Physiol B Biochem Mol Biol; 2002 Oct; 133(2):257-67. PubMed ID: 12381388 [TBL] [Abstract][Full Text] [Related]
33. Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue. Jancso A; Szent-Györgyi AG Proc Natl Acad Sci U S A; 1994 Sep; 91(19):8762-6. PubMed ID: 8090720 [TBL] [Abstract][Full Text] [Related]
34. Proteolytic susceptibility of both isolated and bound light chains from various myosins to myopathic hamster protease. Margossian SS; Chantler PD; Sellers JR; Malhotra A; Stafford WF; Slayter HS J Biol Chem; 1984 Nov; 259(21):13534-40. PubMed ID: 6386815 [TBL] [Abstract][Full Text] [Related]
35. Regulatory domains of myosins: influence of heavy chain on Ca(2+)-binding. Kalabokis VN; O'Neall-Hennessey E; Szent-Györgyi AG J Muscle Res Cell Motil; 1994 Oct; 15(5):547-53. PubMed ID: 7860702 [TBL] [Abstract][Full Text] [Related]
36. Regulation of contraction by calcium binding myosins. Szent-Györgyi AG Biophys Chem; 1996 Apr; 59(3):357-63. PubMed ID: 8672723 [TBL] [Abstract][Full Text] [Related]
37. Calcium-mediated regulation of recombinant hybrids of full-length Physarum myosin heavy chain with Physarum/scallop myosin light chains. Zhang Y; Kawamichi H; Kohama K; Nakamura A Acta Biochim Biophys Sin (Shanghai); 2016 Jun; 48(6):536-43. PubMed ID: 27125976 [TBL] [Abstract][Full Text] [Related]
38. Two phosphorylations specific to the tail region of the 204-kDa heavy chain isoform of porcine aorta smooth muscle myosin. Fukui Y; Morita F J Biochem; 1996 Apr; 119(4):783-90. PubMed ID: 8743582 [TBL] [Abstract][Full Text] [Related]
39. Organization and ligand binding properties of the tail of Acanthamoeba myosin-IA. Identification of an actin-binding site in the basic (tail homology-1) domain. Lee WL; Ostap EM; Zot HG; Pollard TD J Biol Chem; 1999 Dec; 274(49):35159-71. PubMed ID: 10574999 [TBL] [Abstract][Full Text] [Related]
40. Loop I can modulate ADP affinity, ATPase activity, and motility of different scallop myosins. Transient kinetic analysis of S1 isoforms. Kurzawa-Goertz SE; Perreault-Micale CL; Trybus KM; Szent-Györgyi AG; Geeves MA Biochemistry; 1998 May; 37(20):7517-25. PubMed ID: 9585566 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]