These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 11129486)
1. Reparameterizing the pattern mixture model for sensitivity analyses under informative dropout. Daniels MJ; Hogan JW Biometrics; 2000 Dec; 56(4):1241-8. PubMed ID: 11129486 [TBL] [Abstract][Full Text] [Related]
2. Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Roy J Biometrics; 2003 Dec; 59(4):829-36. PubMed ID: 14969461 [TBL] [Abstract][Full Text] [Related]
3. Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout. Hogan JW; Lin X; Herman B Biometrics; 2004 Dec; 60(4):854-64. PubMed ID: 15606405 [TBL] [Abstract][Full Text] [Related]
4. A general class of pattern mixture models for nonignorable dropout with many possible dropout times. Roy J; Daniels MJ Biometrics; 2008 Jun; 64(2):538-45. PubMed ID: 17900312 [TBL] [Abstract][Full Text] [Related]
5. Mixed-effect hybrid models for longitudinal data with nonignorable dropout. Yuan Y; Little RJ Biometrics; 2009 Jun; 65(2):478-86. PubMed ID: 18759842 [TBL] [Abstract][Full Text] [Related]
6. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis. Blozis SA Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346 [TBL] [Abstract][Full Text] [Related]
7. A varying-coefficient method for analyzing longitudinal clinical trials data with nonignorable dropout. Forster JE; MaWhinney S; Ball EL; Fairclough D Contemp Clin Trials; 2012 Mar; 33(2):378-85. PubMed ID: 22101223 [TBL] [Abstract][Full Text] [Related]
8. Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts. Dantan E; Proust-Lima C; Letenneur L; Jacqmin-Gadda H Int J Biostat; 2008; 4(1):Article 14. PubMed ID: 22462120 [TBL] [Abstract][Full Text] [Related]
9. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout. Lee M; Lee K; Lee J Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985 [TBL] [Abstract][Full Text] [Related]
10. A comparison of the random-effects pattern mixture model with last-observation-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts. Siddiqui O; Ali MW J Biopharm Stat; 1998 Nov; 8(4):545-63. PubMed ID: 9855033 [TBL] [Abstract][Full Text] [Related]
11. Implementation of pattern-mixture models in randomized clinical trials. Bunouf P; Molenberghs G Pharm Stat; 2016 Nov; 15(6):494-506. PubMed ID: 27658505 [TBL] [Abstract][Full Text] [Related]
12. A note on MAR, identifying restrictions, model comparison, and sensitivity analysis in pattern mixture models with and without covariates for incomplete data. Wang C; Daniels MJ Biometrics; 2011 Sep; 67(3):810-8. PubMed ID: 21361893 [TBL] [Abstract][Full Text] [Related]
13. A hybrid model for nonignorable dropout in longitudinal binary responses. Wilkins KJ; Fitzmaurice GM Biometrics; 2006 Mar; 62(1):168-76. PubMed ID: 16542243 [TBL] [Abstract][Full Text] [Related]
15. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches. Chan JS Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236 [TBL] [Abstract][Full Text] [Related]
16. A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies with Nonignorable Missingness with Application to an Acute Schizophrenia Clinical Trial. Linero AR; Daniels MJ J Am Stat Assoc; 2015 Mar; 110(509):45-55. PubMed ID: 26236060 [TBL] [Abstract][Full Text] [Related]
17. Modeling missingness for time-to-event data: a case study in osteoporosis. Neuenschwander B; Branson M J Biopharm Stat; 2004 Nov; 14(4):1005-19. PubMed ID: 15587977 [TBL] [Abstract][Full Text] [Related]
18. Bayesian sensitivity analyses for longitudinal data with dropouts that are potentially missing not at random: A high dimensional pattern-mixture model. Kaciroti NA; Little RJA Stat Med; 2021 Sep; 40(21):4609-4628. PubMed ID: 34405912 [TBL] [Abstract][Full Text] [Related]
19. A sensitivity analysis approach for informative dropout using shared parameter models. Su L; Li Q; Barrett JK; Daniels MJ Biometrics; 2019 Sep; 75(3):917-926. PubMed ID: 30666621 [TBL] [Abstract][Full Text] [Related]
20. Generalized additive selection models for the analysis of studies with potentially nonignorable missing outcome data. Scharfstein DO; Irizarry RA Biometrics; 2003 Sep; 59(3):601-13. PubMed ID: 14601761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]