These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11130071)

  • 21. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves.
    Sun Y; Zhou Q; Zhang W; Fu Y; Huang H
    Planta; 2002 Mar; 214(5):694-702. PubMed ID: 11882937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era.
    Beerling DJ; Osborne CP; Chaloner WG
    Nature; 2001 Mar; 410(6826):352-4. PubMed ID: 11268207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling of stomatal density response to atmospheric CO2.
    Konrad W; Roth-Nebelsick A; Grein M
    J Theor Biol; 2008 Aug; 253(4):638-58. PubMed ID: 18538792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
    Liu T; Ohashi-Ito K; Bergmann DC
    Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.
    Ng CK; Carr K; McAinsh MR; Powell B; Hetherington AM
    Nature; 2001 Mar; 410(6828):596-9. PubMed ID: 11279499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis.
    Israelsson M; Siegel RS; Young J; Hashimoto M; Iba K; Schroeder JI
    Curr Opin Plant Biol; 2006 Dec; 9(6):654-63. PubMed ID: 17010657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.
    Masle J; Gilmore SR; Farquhar GD
    Nature; 2005 Aug; 436(7052):866-70. PubMed ID: 16007076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses.
    Paoletti E; Grulke NE
    Environ Pollut; 2005 Oct; 137(3):483-93. PubMed ID: 16005760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plant development. Signals from mature to new leaves.
    Lake JA; Quick WP; Beerling DJ; Woodward FI
    Nature; 2001 May; 411(6834):154. PubMed ID: 11346781
    [No Abstract]   [Full Text] [Related]  

  • 30. Insights into the Molecular Mechanisms of CO
    Zhang J; De-Oliveira-Ceciliato P; Takahashi Y; Schulze S; Dubeaux G; Hauser F; Azoulay-Shemer T; Tõldsepp K; Kollist H; Rappel WJ; Schroeder JI
    Curr Biol; 2018 Dec; 28(23):R1356-R1363. PubMed ID: 30513335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO
    Haworth M; Marino G; Materassi A; Raschi A; Scutt CP; Centritto M
    Sci Total Environ; 2023 Mar; 863():160908. PubMed ID: 36535478
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural Variation in Arabidopsis Cvi-0 Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling.
    Jakobson L; Vaahtera L; Tõldsepp K; Nuhkat M; Wang C; Wang YS; Hõrak H; Valk E; Pechter P; Sindarovska Y; Tang J; Xiao C; Xu Y; Gerst Talas U; García-Sosa AT; Kangasjärvi S; Maran U; Remm M; Roelfsema MR; Hu H; Kangasjärvi J; Loog M; Schroeder JI; Kollist H; Brosché M
    PLoS Biol; 2016 Dec; 14(12):e2000322. PubMed ID: 27923039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A molecular pathway for CO₂ response in Arabidopsis guard cells.
    Tian W; Hou C; Ren Z; Pan Y; Jia J; Zhang H; Bai F; Zhang P; Zhu H; He Y; Luo S; Li L; Luan S
    Nat Commun; 2015 Jan; 6():6057. PubMed ID: 25599916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Response of an Arabidopsis mutant to elevated CO2 concentration].
    Hao L; Xu X; Cao J
    Ying Yong Sheng Tai Xue Bao; 2003 Dec; 14(12):2359-60. PubMed ID: 15031951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stomatal development: cross talk puts mouths in place.
    Nadeau JA; Sack FD
    Trends Plant Sci; 2003 Jun; 8(6):294-9. PubMed ID: 12818664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae).
    Case A; Curtis P; Snow A
    Am J Bot; 1998 Feb; 85(2):253. PubMed ID: 21684908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guard cell metabolism and CO2 sensing.
    Vavasseur A; Raghavendra AS
    New Phytol; 2005 Mar; 165(3):665-82. PubMed ID: 15720679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels.
    Hu JJ; Xing YW; Turkington R; Jacques FM; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2015 Apr; 115(5):777-88. PubMed ID: 25681824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change.
    Chen LQ; Li CS; Chaloner WG; Beerling DJ; Sun QG; Collinson ME; Mitchell PL
    Am J Bot; 2001 Jul; 88(7):1309-15. PubMed ID: 11454631
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-distance CO(2) signalling in plants.
    Lake JA; Woodward FI; Quick WP
    J Exp Bot; 2002 Feb; 53(367):183-93. PubMed ID: 11807121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.