These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11130103)

  • 21. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees.
    Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
    Berke GS; Hanson DG; Gerratt BR; Trapp TK; Macagba C; Natividad M
    Otolaryngol Head Neck Surg; 1990 Mar; 102(3):212-8. PubMed ID: 2108407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intraglottal velocity and pressure measurements in a hemilarynx model.
    Oren L; Gutmark E; Khosla S
    J Acoust Soc Am; 2015 Feb; 137(2):935-43. PubMed ID: 25698025
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pressure distributions in a static physical model of the hemilarynx: measurements and computations.
    Fulcher LP; Scherer RC; De Witt KJ; Thapa P; Bo Y; Kucinschi BR
    J Voice; 2010 Jan; 24(1):2-20. PubMed ID: 18538986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape.
    Scherer RC; Torkaman S; Kucinschi BR; Afjeh AA
    J Acoust Soc Am; 2010 Aug; 128(2):828-38. PubMed ID: 20707452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
    Alipour F; Scherer RC
    J Voice; 2015 Nov; 29(6):649-59. PubMed ID: 25873541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of glottal angle on intraglottal pressure.
    Li S; Scherer RC; Wan M; Wang S; Wu H
    J Acoust Soc Am; 2006 Jan; 119(1):539-48. PubMed ID: 16454307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal power and pressure-flow relationships in excised tiger larynges.
    Titze IR; Fitch WT; Hunter EJ; Alipour F; Montequin D; Armstrong DL; McGee J; Walsh EJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3866-73. PubMed ID: 21037066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of phonatory efficiency by vocal fold tension and glottic width in the excised canine larynx.
    Slavit DH; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1991 Aug; 100(8):668-77. PubMed ID: 1872519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of flow-structure interaction in the larynx during phonation using an immersed-boundary method.
    Luo H; Mittal R; Bielamowicz SA
    J Acoust Soc Am; 2009 Aug; 126(2):816-24. PubMed ID: 19640046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of vibratory mode changes in symmetric and asymmetric activation of the canine larynx.
    Schlegel P; Berry DA; Chhetri DK
    PLoS One; 2022; 17(4):e0266910. PubMed ID: 35421159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model.
    Semmler M; Berry DA; Schützenberger A; Döllinger M
    J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.