BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11130104)

  • 1. Acoustic impedance of an artificially lengthened and constricted vocal tract.
    Story BH; Laukkanen AM; Titze IR
    J Voice; 2000 Dec; 14(4):455-69. PubMed ID: 11130104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificially lengthened and constricted vocal tract in vocal training methods.
    Bele IV
    Logoped Phoniatr Vocol; 2005; 30(1):34-40. PubMed ID: 16040438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can vocal economy in phonation be increased with an artificially lengthened vocal tract? A computer modeling study.
    Titze IR; Laukkanen AM
    Logoped Phoniatr Vocol; 2007; 32(4):147-56. PubMed ID: 17917981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physiological and acoustic study on voiced bilabial fricative/beta:/as a vocal exercise.
    Laukkanen AM; Lindholm P; Vilkman E; Haataja K; Alku P
    J Voice; 1996 Mar; 10(1):67-77. PubMed ID: 8653180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of an artificially lengthened vocal tract on estimated glottal contact quotient in untrained male voices.
    Gaskill CS; Erickson ML
    J Voice; 2010 Jan; 24(1):57-71. PubMed ID: 19135851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice training and therapy with a semi-occluded vocal tract: rationale and scientific underpinnings.
    Titze IR
    J Speech Lang Hear Res; 2006 Apr; 49(2):448-59. PubMed ID: 16671856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vocal tract shape and acoustic adjustments of children during phonation into narrow flow-resistant tubes.
    Patel RR; Lulich SM; Verdi A
    J Acoust Soc Am; 2019 Jul; 146(1):352. PubMed ID: 31370566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and Computational Modeling of the Effects of Voice Therapy Using Tubes.
    Horáček J; Radolf V; Laukkanen AM
    J Speech Lang Hear Res; 2019 Jul; 62(7):2227-2244. PubMed ID: 31251676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source-tract interaction with prescribed vocal fold motion.
    McGowan RS; Howe MS
    J Acoust Soc Am; 2012 Apr; 131(4):2999-3016. PubMed ID: 22501076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA; Wood G; Ratcliffe P; Epstein R; Pijper A; Svec JG
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic interactions of the voice source with the lower vocal tract.
    Titze IR; Story BH
    J Acoust Soc Am; 1997 Apr; 101(4):2234-43. PubMed ID: 9104025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw.
    Guzman M; Laukkanen AM; Krupa P; Horáček J; Švec JG; Geneid A
    J Voice; 2013 Jul; 27(4):523.e19-34. PubMed ID: 23683806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the ability of a physiologically constrained area function model of the vocal tract to produce normal formant patterns under perturbed conditions.
    Story BH
    J Acoust Soc Am; 2004 Apr; 115(4):1760-70. PubMed ID: 15101654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal intensity in falsetto phonation of a countertenor: an analysis by synthesis approach.
    Tom K; Titze IR
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1667-76. PubMed ID: 11572375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of laryngeal resistance and maximum power transfer with semi-occluded airway vocalization.
    Titze IR
    J Acoust Soc Am; 2021 Jun; 149(6):4106. PubMed ID: 34241487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.