BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11130853)

  • 1. Effects of copper ions on the free radical-scavenging properties of reduced gluthathione: implications of a complex formation.
    Jiménez I; Speisky H
    J Trace Elem Med Biol; 2000 Oct; 14(3):161-7. PubMed ID: 11130853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double edge redox-implications for the interaction between endogenous thiols and copper ions: In vitro studies.
    Carrasco-Pozo C; Aliaga ME; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2008 Nov; 16(22):9795-803. PubMed ID: 18926709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of ABTS derived radical cation scavenging by bucillamine, cysteine, and glutathione. Catalytic effect of Cu(2+) ions.
    Valent I; Topolská D; Valachová K; Bujdák J; Šoltés L
    Biophys Chem; 2016 May; 212():9-16. PubMed ID: 26978549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione.
    Milne L; Nicotera P; Orrenius S; Burkitt MJ
    Arch Biochem Biophys; 1993 Jul; 304(1):102-9. PubMed ID: 8323275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of chelating agents and amino acids in preventing free radical formation in bleaching systems.
    Hodes J; Sielaff P; Metz H; Kessler-Becker D; Gassenmeier T; Neubert RHH
    Free Radic Biol Med; 2018 Dec; 129():194-201. PubMed ID: 30243703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of superoxide radicals by copper-glutathione complexes: redox-consequences associated with their interaction with reduced glutathione.
    Speisky H; Gómez M; Burgos-Bravo F; López-Alarcón C; Jullian C; Olea-Azar C; Aliaga ME
    Bioorg Med Chem; 2009 Mar; 17(5):1803-10. PubMed ID: 19230679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro interaction between homocysteine and copper ions: Potential redox implications.
    Carrasco-Pozo C; Alvarez-Lueje A; Olea-Azar C; López-Alarcón C; Speisky H
    Exp Biol Med (Maywood); 2006 Oct; 231(9):1569-75. PubMed ID: 17018882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers.
    Apak R; Güçlü K; Ozyürek M; Bektaşoğlu B; Bener M
    Methods Mol Biol; 2010; 594():215-39. PubMed ID: 20072920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of nitric oxide with 2-thio-5-nitrobenzoic acid: implications for the determination of free sulfhydryl groups by Ellman's reagent.
    Gergel' D; Cederbaum AI
    Arch Biochem Biophys; 1997 Nov; 347(2):282-8. PubMed ID: 9367537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide-dependent reduction of free Fe(3+) and release of Fe(2+) from ferritin by the physiologically-occurring Cu(I)-glutathione complex.
    Aliaga ME; Carrasco-Pozo C; López-Alarcón C; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2011 Jan; 19(1):534-41. PubMed ID: 21115254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxylation of deoxyguanosine in DNA by copper and thiols.
    Spear N; Aust SD
    Arch Biochem Biophys; 1995 Feb; 317(1):142-8. PubMed ID: 7872776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of porphyrinogen oxidation by mercuric ion. I. Evidence of free radical formation in the presence of thiols and hydrogen peroxide.
    Woods JS; Calas CA; Aicher LD; Robinson BH; Mailer C
    Mol Pharmacol; 1990 Aug; 38(2):253-60. PubMed ID: 2166905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro kinetic evaluation of the free radical scavenging ability of propofol.
    Li W; Zhang Y; Liu Y; Yue F; Lu Y; Qiu H; Gao D; Gao Y; Wu Y; Wang Z; Huang R; Zhang C
    Anesthesiology; 2012 Jun; 116(6):1258-66. PubMed ID: 22534248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of impact of metal ion contamination on carp (Cyprinus carpio L.) gill cell suspensions.
    Arabi M
    Biol Trace Elem Res; 2004 Sep; 100(3):229-45. PubMed ID: 15475620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation.
    Spear N; Aust SD
    Arch Biochem Biophys; 1995 Dec; 324(1):111-6. PubMed ID: 7503544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-active complexes formed during the interaction between glutathione and mercury and/or copper ions.
    Aliaga ME; López-Alarcón C; Barriga G; Olea-Azar C; Speisky H
    J Inorg Biochem; 2010 Oct; 104(10):1084-90. PubMed ID: 20638134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro antioxidant and radical-scavenging capacities of Citrullus colocynthes (L) and Artemisia absinthium extracts using promethazine hydrochloride radical cation and contemporary assays.
    Asghar MN; Khan IU; Bano N
    Food Sci Technol Int; 2011 Oct; 17(5):481-94. PubMed ID: 21954313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide scavenging by thiol/copper complex of captopril--an EPR spectroscopy study.
    Reguli J; Misík V
    Free Radic Res; 1995 Feb; 22(2):123-30. PubMed ID: 7704183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.