These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11130918)

  • 1. Neuronal activity and the establishment of normal and epileptic circuits during brain development.
    Swann JW; Smith KL; Lee CL
    Int Rev Neurobiol; 2001; 45():89-118. PubMed ID: 11130918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy.
    Jiang M; Lee CL; Smith KL; Swann JW
    J Neurosci; 1998 Oct; 18(20):8356-68. PubMed ID: 9763479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system.
    Swann JW; Hablitz JJ
    Ment Retard Dev Disabil Res Rev; 2000; 6(4):258-67. PubMed ID: 11107191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local circuit abnormalities in chronically epileptic rats after intrahippocampal tetanus toxin injection in infancy.
    Smith KL; Lee CL; Swann JW
    J Neurophysiol; 1998 Jan; 79(1):106-16. PubMed ID: 9425181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental neuroplasticity: roles in early life seizures and chronic epilepsy.
    Swann JW; Pierson MG; Smith KL; Lee CL
    Adv Neurol; 1999; 79():203-16. PubMed ID: 10514815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ontogeny of hippocampal local circuits and focal epileptogenesis.
    Swann JW; Smith KL; Gómez CM; Brady RJ
    Epilepsy Res Suppl; 1992; 9():115-25; discussion 125-6. PubMed ID: 1285904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade in vivo.
    Galvan CD; Wenzel JH; Dineley KT; Lam TT; Schwartzkroin PA; Sweatt JD; Swann JW
    Eur J Neurosci; 2003 Oct; 18(7):1861-72. PubMed ID: 14622219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized excitatory synaptic interactions mediate the sustained depolarization of electrographic seizures in developing hippocampus.
    Swann JW; Smith KL; Brady RJ
    J Neurosci; 1993 Nov; 13(11):4680-9. PubMed ID: 7901349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures.
    Bausch SB; McNamara JO
    J Neurophysiol; 2000 Dec; 84(6):2918-32. PubMed ID: 11110821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recurrent excitatory connectivity in the dentate gyrus of kindled and kainic acid-treated rats.
    Lynch M; Sutula T
    J Neurophysiol; 2000 Feb; 83(2):693-704. PubMed ID: 10669485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spine loss and other dendritic abnormalities in epilepsy.
    Swann JW; Al-Noori S; Jiang M; Lee CL
    Hippocampus; 2000; 10(5):617-25. PubMed ID: 11075833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal remodeling during postnatal maturation of CA3 hippocampal pyramidal neurons.
    Gomez-Di Cesare CM; Smith KL; Rice FL; Swann JW
    J Comp Neurol; 1997 Jul; 384(2):165-80. PubMed ID: 9215716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term change in synaptic transmission in CA3 circuits followed by spontaneous rhythmic activity in rat hippocampal slices.
    Nakashima K; Hayashi H; Shimizu O; Ishizuka S
    Neurosci Res; 2001 Aug; 40(4):325-36. PubMed ID: 11463478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Proposed Mechanism for Spontaneous Transitions between Interictal and Ictal Activity.
    Jacob T; Lillis KP; Wang Z; Swiercz W; Rahmati N; Staley KJ
    J Neurosci; 2019 Jan; 39(3):557-575. PubMed ID: 30446533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit.
    Patel LS; Wenzel HJ; Schwartzkroin PA
    J Neurosci; 2004 Oct; 24(41):9005-14. PubMed ID: 15483119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex.
    Tóth K; Hofer KT; Kandrács Á; Entz L; Bagó A; Erőss L; Jordán Z; Nagy G; Sólyom A; Fabó D; Ulbert I; Wittner L
    J Physiol; 2018 Jan; 596(2):317-342. PubMed ID: 29178354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hippocampal slices in experimental and human epilepsy.
    Schwartzkroin PA
    Adv Neurol; 1986; 44():991-1010. PubMed ID: 3706029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-dependent alterations in the operations of hippocampal neural networks.
    Swann JW; Smith KL; Brady RJ
    Ann N Y Acad Sci; 1991; 627():264-76. PubMed ID: 1652915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axonal sprouting of CA1 pyramidal cells in hyperexcitable hippocampal slices of kainate-treated rats.
    Perez Y; Morin F; Beaulieu C; Lacaille JC
    Eur J Neurosci; 1996 Apr; 8(4):736-748. PubMed ID: 9081625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.