These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 11131021)

  • 1. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.
    Galushko AS; Schink B
    Arch Microbiol; 2000 Nov; 174(5):314-21. PubMed ID: 11131021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes.
    Kaden J; S Galushko A; Schink B
    Arch Microbiol; 2002 Jul; 178(1):53-8. PubMed ID: 12070769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens.
    Butler JE; Glaven RH; Esteve-Núñez A; Núñez C; Shelobolina ES; Bond DR; Lovley DR
    J Bacteriol; 2006 Jan; 188(2):450-5. PubMed ID: 16385034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB.
    Van Kuijk BL; Schlösser E; Stams AJ
    Arch Microbiol; 1998 Apr; 169(4):346-52. PubMed ID: 9531636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction.
    Coppi MV; O'Neil RA; Leang C; Kaufmann F; Methé BA; Nevin KP; Woodard TL; Liu A; Lovley DR
    Microbiology (Reading); 2007 Oct; 153(Pt 10):3572-3585. PubMed ID: 17906154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism.
    Kröger A; Biel S; Simon J; Gross R; Unden G; Lancaster CR
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):23-38. PubMed ID: 11803015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomics of Geobacter sulfurreducens PCA
    Mollaei M; Timmers PHA; Suarez-Diez M; Boeren S; van Gelder AH; Stams AJM; Plugge CM
    Environ Microbiol; 2021 Jan; 23(1):299-315. PubMed ID: 33185968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.
    Esteve-Núñez A; Rothermich M; Sharma M; Lovley D
    Environ Microbiol; 2005 May; 7(5):641-8. PubMed ID: 15819846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fumarate reduction and product formation by the Reiter strain of Treponema phagedenis.
    George HA; Smibert RM
    J Bacteriol; 1982 Dec; 152(3):1049-59. PubMed ID: 7142104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentative toluene degradation in anaerobic defined syntrophic cocultures.
    Meckenstock RU
    FEMS Microbiol Lett; 1999 Aug; 177(1):67-73. PubMed ID: 10436924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation.
    Yang TH; Coppi MV; Lovley DR; Sun J
    Microb Cell Fact; 2010 Nov; 9():90. PubMed ID: 21092215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange.
    Shrestha PM; Rotaru AE; Aklujkar M; Liu F; Shrestha M; Summers ZM; Malvankar N; Flores DC; Lovley DR
    Environ Microbiol Rep; 2013 Dec; 5(6):904-10. PubMed ID: 24249299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Unsaturated organic acids as terminal electron acceptors for reductase chains of anaerobic bacteria].
    Arkhipova OV; Akumenko VK
    Mikrobiologiia; 2005; 74(6):725-37. PubMed ID: 16400981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes.
    Biel S; Simon J; Gross R; Ruiz T; Ruitenberg M; Kröger A
    Eur J Biochem; 2002 Apr; 269(7):1974-83. PubMed ID: 11952800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malate and fumarate extend lifespan in Caenorhabditis elegans.
    Edwards CB; Copes N; Brito AG; Canfield J; Bradshaw PC
    PLoS One; 2013; 8(3):e58345. PubMed ID: 23472183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geobacter sulfurreducens metabolism at different donor/acceptor ratios.
    Frühauf-Wyllie HM; Holtmann D
    Microbiologyopen; 2022 Oct; 11(5):e1322. PubMed ID: 36314758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes.
    Miller TL
    Arch Microbiol; 1978 May; 117(2):145-52. PubMed ID: 678020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intracellular localization of enzymes in white-adipose-tissue fat-cells and permeability properties of fat-cell mitochondria. Transfer of acetyl units and reducing power between mitochondria and cytoplasm.
    Martin BR; Denton RM
    Biochem J; 1970 May; 117(5):861-77. PubMed ID: 4393782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.