These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11131025)

  • 1. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples.
    Bastos AE; Moon DH; Rossi A; Trevors JT; Tsai SM
    Arch Microbiol; 2000 Nov; 174(5):346-52. PubMed ID: 11131025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of green fluorescent protein gene into phenol-degrading Alcaligenes faecalis cells and their monitoring in phenol-contaminated soil.
    Bastos AE; Cassidy MB; Trevors JT; Lee H; Rossi A
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):255-60. PubMed ID: 11499940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Isolation and characterization of a chlorpyrifos degrading bacteria and its bioremediation application in the soil].
    Yang L; Zhao YH; Zhang BX; Zhang X
    Wei Sheng Wu Xue Bao; 2005 Dec; 45(6):905-9. PubMed ID: 16496701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    J Hazard Mater; 2010 Jan; 173(1-3):783-8. PubMed ID: 19783362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenol-degrading denitrifying bacteria in wastewater sediments.
    Tong TT; Błaszczyk M; Przytocka-Jusiak M; Mycielski R
    Acta Microbiol Pol; 1998; 47(2):203-11. PubMed ID: 9839379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of phenol by a halotolerant versatile yeast Candida tropicalis SDP-1 in wastewater and soil under high salinity conditions.
    Gong Y; Ding P; Xu MJ; Zhang CM; Xing K; Qin S
    J Environ Manage; 2021 Jul; 289():112525. PubMed ID: 33836438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor.
    Rehfuss M; Urban J
    Syst Appl Microbiol; 2005 Jul; 28(5):421-9. PubMed ID: 16094869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of phenol degrading yeast.
    Patel R; Rajkumar S
    J Basic Microbiol; 2009 Apr; 49(2):216-9. PubMed ID: 18798176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of phenol-degrading yeasts from an oil refinery wastewater in Brazil.
    Rocha LL; de Aguiar Cordeiro R; Cavalcante RM; do Nascimento RF; Martins SC; Santaella ST; Melo VM
    Mycopathologia; 2007 Oct; 164(4):183-8. PubMed ID: 17674140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characterization of phenol-degrading Rhodococcus sp. strain P1 from coking wastewater].
    Zhang Y; Meng X; Chai T
    Wei Sheng Wu Xue Bao; 2013 Oct; 53(10):1117-24. PubMed ID: 24409768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of a phenol-degrading denitrifying bacteria to high concentration of phenol in the medium.
    Son TT; Błaszczyk M; Mycielski R
    Acta Microbiol Pol; 1998; 47(3):297-304. PubMed ID: 9990712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and growth kinetics of a novel phenol-degrading bacterium Microbacterium oxydans from the sediment of Taihu Lake (China).
    Wang L; Li Y; Niu L; Dai Y; Wu Y; Wang Q
    Water Sci Technol; 2016; 73(8):1882-90. PubMed ID: 27120643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of 2,4,6-trichlorophenol by a specialized organism and by indigenous soil microflora: bioaugmentation and self-remediability for soil restoration.
    Andreoni V; Baggi G; Colombo M; Cavalca L; Zangrossi M; Bernasconi S
    Lett Appl Microbiol; 1998 Aug; 27(2):86-92. PubMed ID: 9750329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities.
    Sandhu A; Halverson LJ; Beattie GA
    Microb Ecol; 2009 Feb; 57(2):276-85. PubMed ID: 19034559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. I. Physiology of growth and substrate utilization.
    Krug M; Ziegler H; Straube G
    J Basic Microbiol; 1985; 25(2):103-10. PubMed ID: 4009428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of phenol degradation by high-efficiency binary mixed culture.
    Zeng HY; Jiang H; Xia K; Wang YJ; Huang Y
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1035-44. PubMed ID: 20300870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and selection of phenol-degrading microorganisms from industrial wastewaters and kinetics of the biodegradation.
    Rigo M; Alegre RM
    Folia Microbiol (Praha); 2004; 49(1):41-5. PubMed ID: 15114864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol degradation and heavy metal tolerance of Antarctic yeasts.
    Fernández PM; Martorell MM; Blaser MG; Ruberto LAM; de Figueroa LIC; Mac Cormack WP
    Extremophiles; 2017 May; 21(3):445-457. PubMed ID: 28271165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.