These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 11131072)
21. Structural investigation of beta-lactoglobulin gelation in ethanol/water solutions. Renard D; Lefebvre J; Robert P; Llamas G; Dufour E; Dufour E Int J Biol Macromol; 1999 Oct; 26(1):35-44. PubMed ID: 10520954 [TBL] [Abstract][Full Text] [Related]
22. Physical properties of acid milk gels prepared at 37 degrees C up to gelation but at different incubation temperatures for the remainder of fermentation. Peng Y; Horne DS; Lucey JA J Dairy Sci; 2010 May; 93(5):1910-7. PubMed ID: 20412904 [TBL] [Abstract][Full Text] [Related]
23. Comparison of heat and pressure treatments of skim milk, fortified with whey protein concentrate, for set yogurt preparation: effects on milk proteins and gel structure. Needs EC; Capellas M; Bland AP; Manoj P; MacDougal D; Paul G J Dairy Res; 2000 Aug; 67(3):329-48. PubMed ID: 11037230 [TBL] [Abstract][Full Text] [Related]
24. Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging. Woo HD; Moon TW; Gunasekaran S; Ko S J Dairy Sci; 2013 Sep; 96(9):5565-74. PubMed ID: 23871379 [TBL] [Abstract][Full Text] [Related]
25. Fibrillar beta-lactoglobulin gels: Part 3. Dynamic mechanical characterization of solvent-induced systems. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2430-8. PubMed ID: 15530060 [TBL] [Abstract][Full Text] [Related]
26. Fibrillar beta-lactoglobulin gels: Part 2. Dynamic mechanical characterization of heat-set systems. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2420-9. PubMed ID: 15530059 [TBL] [Abstract][Full Text] [Related]
27. Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Mao Y; Krischke M; Hengst C; Kulozik U Food Chem; 2018 Jul; 253():194-202. PubMed ID: 29502821 [TBL] [Abstract][Full Text] [Related]
28. Comparison and analysis of mechanism of β-lactoglobulin self-assembled gel carriers formed by different gelation methods. Meng X; Wu Y; Tang W; Zhou L; Liu W; Liu C; Prakash S; Zhang Y; Zhong J Food Chem; 2024 Jun; 442():138414. PubMed ID: 38237299 [TBL] [Abstract][Full Text] [Related]
29. The effect of gel structure on the kinetics of simulated gastrointestinal digestion of bovine β-lactoglobulin. Macierzanka A; Böttger F; Lansonneur L; Groizard R; Jean AS; Rigby NM; Cross K; Wellner N; Mackie AR Food Chem; 2012 Oct; 134(4):2156-63. PubMed ID: 23442669 [TBL] [Abstract][Full Text] [Related]
30. Proteolysis of bovine beta-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity. Iametti S; Rasmussen P; Frøkiaer H; Ferranti P; Addeo F; Bonomi F Eur J Biochem; 2002 Mar; 269(5):1362-72. PubMed ID: 11874450 [TBL] [Abstract][Full Text] [Related]
31. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B. Knudsen JC; Øgendal LH; Skibsted LH Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877 [TBL] [Abstract][Full Text] [Related]
32. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements. Yoshida K; Yamaguchi T; Osaka N; Endo H; Shibayama M Phys Chem Chem Phys; 2010 Apr; 12(13):3260-9. PubMed ID: 20237717 [TBL] [Abstract][Full Text] [Related]
33. Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt. Ozcan-Yilsay T; Lee WJ; Horne D; Lucey JA J Dairy Sci; 2007 Apr; 90(4):1644-52. PubMed ID: 17369204 [TBL] [Abstract][Full Text] [Related]
34. Relationships between conformation of beta-lactoglobulin in solution and gel states as revealed by attenuated total reflection Fourier transform infrared spectroscopy. Allain AF; Paquin P; Subirade M Int J Biol Macromol; 1999 Dec; 26(5):337-44. PubMed ID: 10628535 [TBL] [Abstract][Full Text] [Related]
35. Rheological properties and permeability of soy protein-stabilised emulsion gels made by acidification with glucono-δ-lactone. Li F; Kong X; Zhang C; Hua Y J Sci Food Agric; 2011 Sep; 91(12):2186-91. PubMed ID: 21656774 [TBL] [Abstract][Full Text] [Related]
36. Gelation of globular proteins: effect of pH and ionic strength on the critical concentration for gel formation. A simple model and its application to beta-lactoglobulin heat-induced gelation. Renard D; Lefebvre J Int J Biol Macromol; 1992 Oct; 14(5):287-91. PubMed ID: 1419967 [TBL] [Abstract][Full Text] [Related]
37. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin. Veerman C; Baptist H; Sagis LM; van der Linden E J Agric Food Chem; 2003 Jun; 51(13):3880-5. PubMed ID: 12797759 [TBL] [Abstract][Full Text] [Related]
38. Production of β-Lactoglobulin hydrolysates by monolith based immobilized trypsin reactors. Mao Y; Černigoj U; Zalokar V; Štrancar A; Kulozik U Electrophoresis; 2017 Nov; 38(22-23):2947-2956. PubMed ID: 28714138 [TBL] [Abstract][Full Text] [Related]
39. Molecular self-assembly of partially hydrolysed alpha-lactalbumin resulting in strong gels with a novel microstructure. Ipsen R; Otte J; Qvist KB J Dairy Res; 2001 May; 68(2):277-86. PubMed ID: 11504391 [TBL] [Abstract][Full Text] [Related]
40. Effects of processing conditions on the texture and rheological properties of model acid gels and cream cheese. Brighenti M; Govindasamy-Lucey S; Jaeggi JJ; Johnson ME; Lucey JA J Dairy Sci; 2018 Aug; 101(8):6762-6775. PubMed ID: 29753471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]