These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 11131496)
1. Objective quantification of the motion of soft tissues in the orbit. Abràmoff MD; Niessen WJ; Viergever MA IEEE Trans Med Imaging; 2000 Oct; 19(10):986-95. PubMed ID: 11131496 [TBL] [Abstract][Full Text] [Related]
2. Computation and visualization of three-dimensional soft tissue motion in the orbit. Abràmoff MD; Viergever MA IEEE Trans Med Imaging; 2002 Apr; 21(4):296-304. PubMed ID: 12022618 [TBL] [Abstract][Full Text] [Related]
3. MRI dynamic color mapping: a new quantitative technique for imaging soft tissue motion in the orbit. Abràmoff MD; Van Gils AP; Jansen GH; Mourits MP Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3256-60. PubMed ID: 11006211 [TBL] [Abstract][Full Text] [Related]
4. Frequency-selective fat suppression MR imaging. Localized asymmetric failure of fat suppression mimicking orbital disease. Borges AR; Lufkin RB; Huang AY; Farahani K; Arnold AC J Neuroophthalmol; 1997 Mar; 17(1):12-7. PubMed ID: 9093955 [TBL] [Abstract][Full Text] [Related]
5. An adapted optical flow algorithm for robust quantification of cardiac wall motion from standard cine-MR examinations. Xavier M; Lalande A; Walker PM; Brunotte F; Legrand L IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):859-68. PubMed ID: 22717523 [TBL] [Abstract][Full Text] [Related]
6. Correction of motion artifacts from cardiac cine magnetic resonance images. Lötjönen J; Pollari M; Kivistö S; Lauerma K Acad Radiol; 2005 Oct; 12(10):1273-84. PubMed ID: 16179204 [TBL] [Abstract][Full Text] [Related]
7. Artifacts and pitfalls in MR imaging of the orbit: a clinical review. Herrick RC; Hayman LA; Taber KH; Diaz-Marchan PJ; Kuo MD Radiographics; 1997; 17(3):707-24. PubMed ID: 9153707 [TBL] [Abstract][Full Text] [Related]
8. Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device. Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G Acad Radiol; 2006 Sep; 13(9):1093-103. PubMed ID: 16935721 [TBL] [Abstract][Full Text] [Related]
9. 3D myocardial tissue tracking with slice followed cine DENSE MRI. Spottiswoode BS; Zhong X; Lorenz CH; Mayosi BM; Meintjes EM; Epstein FH J Magn Reson Imaging; 2008 May; 27(5):1019-27. PubMed ID: 18425823 [TBL] [Abstract][Full Text] [Related]
10. Motion estimation of tagged cardiac magnetic resonance images using variational techniques. Carranza-Herrezuelo N; Bajo A; Sroubek F; Santamarta C; Cristobal G; Santos A; Ledesma-Carbayo MJ Comput Med Imaging Graph; 2010 Sep; 34(6):514-22. PubMed ID: 20413267 [TBL] [Abstract][Full Text] [Related]
11. Muscle kinematics during isometric contraction: development of phase contrast and spin tag techniques to study healthy and atrophied muscles. Sinha S; Hodgson JA; Finni T; Lai AM; Grinstead J; Edgerton VR J Magn Reson Imaging; 2004 Dec; 20(6):1008-19. PubMed ID: 15558560 [TBL] [Abstract][Full Text] [Related]
12. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound. Danilouchkine MG; Mastik F; van der Steen AF Phys Med Biol; 2009 Mar; 54(6):1397-418. PubMed ID: 19218736 [TBL] [Abstract][Full Text] [Related]
13. Regenerating MR tagged images using harmonic phase (HARP) methods. Osman NF; Prince JL IEEE Trans Biomed Eng; 2004 Aug; 51(8):1428-33. PubMed ID: 15311829 [TBL] [Abstract][Full Text] [Related]
15. Reduction in flow artifacts by using interleaved data acquisition in segmented balanced steady-state free precession cardiac MRI. Amano Y; Nozaki A; Takahama K; Kumazaki T Comput Med Imaging Graph; 2005 Sep; 29(6):441-5. PubMed ID: 15949919 [TBL] [Abstract][Full Text] [Related]
16. Improved optimization strategies for autofocusing motion compensation in MRI via the analysis of image metric maps. Lin W; Song HK Magn Reson Imaging; 2006 Jul; 24(6):751-60. PubMed ID: 16824970 [TBL] [Abstract][Full Text] [Related]
17. Cine phase-contrast magnetic resonance imaging as a tool for quantification of skeletal muscle motion. Asakawa DS; Pappas GP; Blemker SS; Drace JE; Delp SL Semin Musculoskelet Radiol; 2003 Dec; 7(4):287-95. PubMed ID: 14735427 [TBL] [Abstract][Full Text] [Related]
18. Feedback-assisted three-dimensional reconstruction of the left ventricle with MRI. Swingen CM; Seethamraju RT; Jerosch-Herold M J Magn Reson Imaging; 2003 May; 17(5):528-37. PubMed ID: 12720262 [TBL] [Abstract][Full Text] [Related]
19. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Zaitsev M; Dold C; Sakas G; Hennig J; Speck O Neuroimage; 2006 Jul; 31(3):1038-50. PubMed ID: 16600642 [TBL] [Abstract][Full Text] [Related]
20. Isotropic proton-density-weighted high-resolution MRI for volume measurement of reconstructed orbital fractures--a comparison with multislice CT. Kolk A; Pautke C; Wiener E; Schott V; Wolff KD; Horch HH; Rummeny EJ Magn Reson Imaging; 2008 Oct; 26(8):1167-74. PubMed ID: 18524524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]