These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11131796)

  • 41. Influence of chlorothalonil on the removal of organic matter in horizontal subsurface flow constructed wetlands.
    Casas-Zapata JC; Ríos K; Florville-Alejandre TR; Morató J; Peñuela G
    J Environ Sci Health B; 2013; 48(2):122-32. PubMed ID: 23305280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Treating surface water with low nutrients concentration by mixed substrates constructed wetlands.
    Li CJ; Wan MH; Dong Y; Men ZY; Lin Y; Wu DY; Kong HN
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(7):771-6. PubMed ID: 21644155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Treatment of polluted urban river water using filamentous green algae].
    Liang X; Li XP
    Huan Jing Ke Xue; 2008 Jan; 29(1):52-7. PubMed ID: 18441916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-stage constructed wetland systems for polluted surface water treatment.
    Saeed T; Majed N; Khan T; Mallika H
    J Environ Manage; 2019 Nov; 249():109379. PubMed ID: 31421477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification of landscape water by using an innovative application of subsurface flow constructed wetland.
    Chyan JM; Lu CC; Shiu RF; Bellotindos LM
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):535-45. PubMed ID: 26315590
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pollutant removal performance of an integrated upflow-constructed wetland filled with haydites made of Al-based drinking water treatment residuals.
    Wang W; Han Y; Liu H; Zhang K; Yue Q; Bo L; Wang X
    Environ Technol; 2017 May; 38(9):1111-1119. PubMed ID: 27541991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced biological nutrient removal by the alliance of a heterotrophic nitrifying strain with a nitrogen removing ecosystem.
    Ahmad Nu; Xu H; Chen L; Liu Z; Lu S
    J Environ Sci (China); 2008; 20(2):216-23. PubMed ID: 18574964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Time-dependent retardation model for chemical oxygen demand removal in a subsurface-flow constructed wetland for winery wastewater treatment.
    Shepherd HL; Tchobanoglous G; Grismer ME
    Water Environ Res; 2001; 73(5):597-606. PubMed ID: 11765996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling water quality in an urban river using hydrological factors--data driven approaches.
    Chang FJ; Tsai YH; Chen PA; Coynel A; Vachaud G
    J Environ Manage; 2015 Mar; 151():87-96. PubMed ID: 25544251
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh.
    Saeed T; Afrin R; Muyeed AA; Sun G
    Chemosphere; 2012 Aug; 88(9):1065-73. PubMed ID: 22673399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sustainable treatment and reuse of diluted pig manure streams in Russia: from laboratory trials to full-scale implementation.
    Kalyuzhnyi S; Sklyar V; Epov A; Arkhipchenko I; Barboulina I; Orlova O; Kovalev A; Nozhevnikova A; Klapwijk A
    Appl Biochem Biotechnol; 2003; 109(1-3):77-94. PubMed ID: 12794285
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microcosm wetlands for wastewater treatment with different hydraulic loading rates and macrophytes.
    Jing SR; Lin YF; Wang TW; Lee DY
    J Environ Qual; 2002; 31(2):690-6. PubMed ID: 11931463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancing the water purification efficiency of a floating treatment wetland using a biofilm carrier.
    Zhang L; Zhao J; Cui N; Dai Y; Kong L; Wu J; Cheng S
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7437-43. PubMed ID: 26697862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries.
    Zurita F; Belmont MA; De Anda J; White JR
    Water Sci Technol; 2011; 63(4):654-9. PubMed ID: 21330710
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of organic pollutants from oak leachate in pilot scale wetland systems: How efficient are aeration and vegetation treatments?
    Svensson H; Ekstam B; Marques M; Hogland W
    Water Res; 2015 Nov; 84():120-6. PubMed ID: 26218465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic remediation test of polluted river water by Eco-tank system.
    Xiao J; Wang H; Chu S; Wong MH
    Environ Technol; 2013; 34(1-4):553-8. PubMed ID: 23530371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water reduction by constructed wetlands treating waste landfill leachate in a tropical region.
    Ogata Y; Ishigaki T; Ebie Y; Sutthasil N; Chiemchaisri C; Yamada M
    Waste Manag; 2015 Oct; 44():164-71. PubMed ID: 26209341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Limestone and pyrite-limestone constructed wetlands for treating river water].
    Zhang J; Li RH; Li J; Hu JS; Sun QQ
    Huan Jing Ke Xue; 2013 Sep; 34(9):3445-50. PubMed ID: 24288988
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ammonia removal from facultative pond effluents in a constructed wetland and an aerated rock filter: performance comparison in winter and summer.
    Johnson ML; Mara DD
    Water Environ Res; 2007 May; 79(5):567-70. PubMed ID: 17571848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.