BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11132284)

  • 1. The skeletal response to matt and polished cemented femoral stems.
    Barker DS; Wang AW; Yeo MF; Nawana NS; Brumby SA; Pearcy MJ; Howie DW
    J Bone Joint Surg Br; 2000 Nov; 82(8):1182-8. PubMed ID: 11132284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses.
    Lennon AB; McCormack BA; Prendergast PJ
    Med Eng Phys; 2003 Dec; 25(10):833-41. PubMed ID: 14630471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polished Cemented Femoral Stems Have a Lower Rate of Revision Than Matt Finished Cemented Stems in Total Hip Arthroplasty: An Analysis of 96,315 Cemented Femoral Stems.
    Hoskins W; van Bavel D; Lorimer M; de Steiger RN
    J Arthroplasty; 2018 May; 33(5):1472-1476. PubMed ID: 29310918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem surface roughness alters creep induced subsidence and 'taper-lock' in a cemented femoral hip prosthesis.
    Norman TL; Thyagarajan G; Saligrama VC; Gruen TA; Blaha JD
    J Biomech; 2001 Oct; 34(10):1325-33. PubMed ID: 11522312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiographic and histologic analysis of cemented double tapered femoral stems.
    Brumby SA; Howie DW; Pearcy MJ; Wang AW; Nawana NS
    Clin Orthop Relat Res; 1998 Oct; (355):229-37. PubMed ID: 9917608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vitro characteristics of cemented titanium femoral stems with a smooth surface finish.
    Akiyama H; Yamamoto K; Kaneuji A; Matsumoto T; Nakamura T
    J Orthop Sci; 2013 Jan; 18(1):29-37. PubMed ID: 22945910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem subsidence of polished and rough double-taper stems: in vitro mechanical effects on the cement-bone interface.
    Kaneuji A; Yamada K; Hirosaki K; Takano M; Matsumoto T
    Acta Orthop; 2009 Jun; 80(3):270-6. PubMed ID: 19421909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants.
    Lennon AB; Prendergast PJ
    J Biomech Eng; 2001 Dec; 123(6):623-8. PubMed ID: 11783734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling debonded stem-cement interface for hip implants: effect of residual stresses.
    Nuño N; Amabili M
    Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):41-8. PubMed ID: 11779645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the fibrous tissue layer in cemented hip replacements: experimental and finite element methods.
    Waide V; Cristofolini L; Stolk J; Verdonschot N; Boogaard GJ; Toni A
    J Biomech; 2004 Jan; 37(1):13-26. PubMed ID: 14672564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of femoral neck length, stem size, and body weight on strains in the proximal cement mantle.
    Harrington MA; O'Connor DO; Lozynsky AJ; Kovach I; Harris WH
    J Bone Joint Surg Am; 2002 Apr; 84(4):573-9. PubMed ID: 11940617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative FEA of the debonding process in different concepts of cemented hip implants.
    Pérez MA; García-Aznar JM; Doblaré M; Seral B; Seral F
    Med Eng Phys; 2006 Jul; 28(6):525-33. PubMed ID: 16257253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration, stem shape, and surface finish in cemented total hip arthroplasty.
    Huiskes R; Verdonschot N; Nivbrant B
    Clin Orthop Relat Res; 1998 Oct; (355):103-12. PubMed ID: 9917595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond.
    Mann KA; Bartel DL; Ayers DC
    J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subsidence of THA stems due to acrylic cement creep is extremely sensitive to interface friction.
    Verdonschot N; Huiskes R
    J Biomech; 1996 Dec; 29(12):1569-75. PubMed ID: 8945655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial stability of fully and partially cemented femoral stems.
    Claes L; Fiedler S; Ohnmacht M; Duda GN
    Clin Biomech (Bristol, Avon); 2000 Dec; 15(10):750-5. PubMed ID: 11050357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding.
    Verdonschot N; Tanck E; Huiskes R
    J Biomed Mater Res; 1998 Dec; 42(4):554-9. PubMed ID: 9827679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cemented femoral stem performance. Effects of proximal bonding, geometry, and neck length.
    Chang PB; Mann KA; Bartel DL
    Clin Orthop Relat Res; 1998 Oct; (355):57-69. PubMed ID: 9917591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of total hip arthroplasty cemented femoral stem surface finish, collar and cement thickness on load transfer to the femur.
    Ebramzadeh E; Sangiorgio SN; Longjohn DB; Buhari CF; Morrison BJ; Dorr LD
    J Appl Biomater Biomech; 2003; 1(1):76-83. PubMed ID: 20803475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.