BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 11132285)

  • 1. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee.
    Iwaki H; Pinskerova V; Freeman MA
    J Bone Joint Surg Br; 2000 Nov; 82(8):1189-95. PubMed ID: 11132285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI.
    Hill PF; Vedi V; Williams A; Iwaki H; Pinskerova V; Freeman MA
    J Bone Joint Surg Br; 2000 Nov; 82(8):1196-8. PubMed ID: 11132286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tibiofemoral movement 3: full flexion in the living knee studied by MRI.
    Nakagawa S; Kadoya Y; Todo S; Kobayashi A; Sakamoto H; Freeman MA; Yamano Y
    J Bone Joint Surg Br; 2000 Nov; 82(8):1199-200. PubMed ID: 11132287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The movement of the knee studied by magnetic resonance imaging.
    Freeman MA; Pinskerova V
    Clin Orthop Relat Res; 2003 May; (410):35-43. PubMed ID: 12771815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The knee in full flexion: an anatomical study.
    Pinskerova V; Samuelson KM; Stammers J; Maruthainar K; Sosna A; Freeman MA
    J Bone Joint Surg Br; 2009 Jun; 91(6):830-4. PubMed ID: 19483242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The shapes of the tibial and femoral articular surfaces in relation to tibiofemoral movement.
    Martelli S; Pinskerova V
    J Bone Joint Surg Br; 2002 May; 84(4):607-13. PubMed ID: 12043788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA.
    Karrholm J; Brandsson S; Freeman MA
    J Bone Joint Surg Br; 2000 Nov; 82(8):1201-3. PubMed ID: 11132288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The movement of the normal tibio-femoral joint.
    Freeman MA; Pinskerova V
    J Biomech; 2005 Feb; 38(2):197-208. PubMed ID: 15598446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does the femur roll-back with flexion?
    Pinskerova V; Johal P; Nakagawa S; Sosna A; Williams A; Gedroyc W; Freeman MA
    J Bone Joint Surg Br; 2004 Aug; 86(6):925-31. PubMed ID: 15330038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rotational Laxity of the Knee Joint - In Vivo MRI Study].
    Němec K; Plajner M; Krásenský J; Landor I; Lesenský J; Pinskerová V
    Acta Chir Orthop Traumatol Cech; 2019; 86(4):249-255. PubMed ID: 31524585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anteroposterior and rotational movement of femur during knee flexion.
    Todo S; Kadoya Y; Moilanen T; Kobayashi A; Yamano Y; Iwaki H; Freeman MA
    Clin Orthop Relat Res; 1999 May; (362):162-70. PubMed ID: 10335295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of muscle load on tibiofemoral knee kinematics.
    Victor J; Labey L; Wong P; Innocenti B; Bellemans J
    J Orthop Res; 2010 Apr; 28(4):419-28. PubMed ID: 19890990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The coupled motion of the femur and patella during in vivo weightbearing knee flexion.
    Li G; Papannagari R; Nha KW; Defrate LE; Gill TJ; Rubash HE
    J Biomech Eng; 2007 Dec; 129(6):937-43. PubMed ID: 18067400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.
    Kia M; Wright TM; Cross MB; Mayman DJ; Pearle AD; Sculco PK; Westrich GH; Imhauser CW
    Clin Orthop Relat Res; 2018 Jan; 476(1):113-123. PubMed ID: 29529625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Validation of an experimental protocol of an optoelectronic analysis of continuous active knee kinematics in vitro].
    Jenny JY; Lefèbvre Y; Vernizeau M; Lavaste F; Skalli W
    Rev Chir Orthop Reparatrice Appar Mot; 2002 Dec; 88(8):790-6. PubMed ID: 12503020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion of the femoral condyles in flexion and extension during a continuous lunge.
    Feng Y; Tsai TY; Li JS; Wang S; Hu H; Zhang C; Rubash HE; Li G
    J Orthop Res; 2015 Apr; 33(4):591-7. PubMed ID: 25641056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation.
    Scott G; Imam MA; Eifert A; Freeman MA; Pinskerova V; Field RE; Skinner J; Banks SA
    Bone Joint Res; 2016 Mar; 5(3):80-6. PubMed ID: 26965166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
    Liu-Barba D; Hull ML; Howell SM
    J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty.
    Li G; Suggs J; Hanson G; Durbhakula S; Johnson T; Freiberg A
    J Bone Joint Surg Am; 2006 Feb; 88(2):395-402. PubMed ID: 16452753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.