BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11132621)

  • 1. The electronic and vibrational structures of iron-oxo porphyrin with a methoxide or cysteinate axial ligand.
    Ohta T; Matsuura K; Yoshizawa K; Morishima I
    J Inorg Biochem; 2000 Nov; 82(1-4):141-52. PubMed ID: 11132621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands.
    Kang Y; Chen H; Jeong YJ; Lai W; Bae EH; Shaik S; Nam W
    Chemistry; 2009 Oct; 15(39):10039-46. PubMed ID: 19697378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axial ligand effects on vibrational dynamics of iron in heme carbonyl studied by nuclear resonance vibrational spectroscopy.
    Ohta T; Liu JG; Saito M; Kobayashi Y; Yoda Y; Seto M; Naruta Y
    J Phys Chem B; 2012 Nov; 116(47):13831-8. PubMed ID: 23072485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The axial ligand effect of oxo-iron porphyrin catalysts. How does chloride compare to thiolate?
    de Visser SP
    J Biol Inorg Chem; 2006 Mar; 11(2):168-78. PubMed ID: 16331402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic properties and electronic structure of five- and six-coordinate iron(II) porphyrin NO complexes: Effect of the axial N-donor ligand.
    Praneeth VK; Näther C; Peters G; Lehnert N
    Inorg Chem; 2006 Apr; 45(7):2795-811. PubMed ID: 16562937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J; Palaniappan V; Gold A; Weiss R; Fitzgerald MM; Sullivan AM; Hosten CM
    J Inorg Biochem; 2006 Apr; 100(4):480-501. PubMed ID: 16513173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structures of six-coordinate ferric porphyrin complexes with weak axial ligands: usefulness of 13C NMR chemical shifts.
    Hoshino A; Ohgo Y; Nakamura M
    Inorg Chem; 2005 Oct; 44(21):7333-44. PubMed ID: 16212360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the axial cysteine ligand on the electronic structure and reactivity of high-valent iron(IV) oxo-porphyrins (Compound I): a theoretical study.
    Choe YK; Nagase S
    J Comput Chem; 2005 Nov; 26(15):1600-11. PubMed ID: 16155883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic ground states of iron porphyrin and of the first species in the catalytic reaction cycle of cytochrome P450s.
    Groenhof AR; Swart M; Ehlers AW; Lammertsma K
    J Phys Chem A; 2005 Apr; 109(15):3411-7. PubMed ID: 16833677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a thiolate axial ligand on the pi-->pi* electronic states of oxoferryl porphyrins: a study of the optical and resonance Raman spectra of compounds I and II of chloroperoxidase.
    Egawa T; Proshlyakov DA; Miki H; Makino R; Ogura T; Kitagawa T; Ishimura Y
    J Biol Inorg Chem; 2001 Jan; 6(1):46-54. PubMed ID: 11191222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward identification of the compound I reactive intermediate in cytochrome P450 chemistry: a QM/MM study of its EPR and Mössbauer parameters.
    Schöneboom JC; Neese F; Thiel W
    J Am Chem Soc; 2005 Apr; 127(16):5840-53. PubMed ID: 15839682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding.
    Mittra K; Sengupta K; Singha A; Bandyopadhyay S; Chatterjee S; Rana A; Samanta S; Dey A
    J Inorg Biochem; 2016 Feb; 155():82-91. PubMed ID: 26638009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiolate coordination to Fe(II)-porphyrin NO centers.
    Praneeth VK; Haupt E; Lehnert N
    J Inorg Biochem; 2005 Apr; 99(4):940-8. PubMed ID: 15811511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the electronic structure of iron(IV)-oxo porphyrin compound I. A quantum chemical topological analysis.
    Viciano I; Berski S; Martí S; Andrés J
    J Comput Chem; 2013 Apr; 34(9):780-9. PubMed ID: 23233452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron porphyrin dications with neutral axial ligands: DFT calculations delineate similarities with heme protein compound II intermediates.
    Chamberlin AC; Ikezaki A; Nakamura M; Ghosh A
    J Phys Chem B; 2011 Apr; 115(13):3642-7. PubMed ID: 21410175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450.
    Yoshizawa K; Kamachi T; Shiota Y
    J Am Chem Soc; 2001 Oct; 123(40):9806-16. PubMed ID: 11583542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the axial ligand on the reactivity of the oxoiron(IV) porphyrin π-cation radical complex: higher stabilization of the product state relative to the reactant state.
    Takahashi A; Yamaki D; Ikemura K; Kurahashi T; Ogura T; Hada M; Fujii H
    Inorg Chem; 2012 Jul; 51(13):7296-305. PubMed ID: 22716193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How axial ligands control the reactivity of high-valent iron(IV)-oxo porphyrin pi-cation radicals in alkane hydroxylation: a computational study.
    Kamachi T; Kouno T; Nam W; Yoshizawa K
    J Inorg Biochem; 2006 Apr; 100(4):751-4. PubMed ID: 16516298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.