These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 11132627)
41. Identity of the axial ligand of the high-spin heme in cytochrome oxidase: spectroscopic characterization of mutants in the bo-type oxidase of Escherichia coli and the aa3-type oxidase of Rhodobacter sphaeroides. Calhoun MW; Thomas JW; Hill JJ; Hosler JP; Shapleigh JP; Tecklenburg MM; Ferguson-Miller S; Babcock GT; Alben JO; Gennis RB Biochemistry; 1993 Oct; 32(40):10905-11. PubMed ID: 8399240 [TBL] [Abstract][Full Text] [Related]
42. Glutamate 107 in subunit I of cytochrome bd from Escherichia coli is part of a transmembrane intraprotein pathway conducting protons from the cytoplasm to the heme b595/heme d active site. Borisov VB; Belevich I; Bloch DA; Mogi T; Verkhovsky MI Biochemistry; 2008 Jul; 47(30):7907-14. PubMed ID: 18597483 [TBL] [Abstract][Full Text] [Related]
43. Substitutions of conserved aromatic amino acid residues in subunit I perturb the metal centers of the Escherichia coli bo-type ubiquinol oxidase. Mogi T; Minagawa J; Hirano T; Sato-Watanabe M; Tsubaki M; Uno T; Hori H; Nakamura H; Nishimura Y; Anraku Y Biochemistry; 1998 Feb; 37(6):1632-9. PubMed ID: 9484234 [TBL] [Abstract][Full Text] [Related]
44. Site-directed mutants of the cytochrome bo ubiquinol oxidase of Escherichia coli: amino acid substitutions for two histidines that are putative CuB ligands. Calhoun MW; Hill JJ; Lemieux LJ; Ingledew WJ; Alben JO; Gennis RB Biochemistry; 1993 Nov; 32(43):11524-9. PubMed ID: 8218219 [TBL] [Abstract][Full Text] [Related]
45. Active site structure of SoxB-type cytochrome bo3 oxidase from thermophilic Bacillus. Uchida T; Tsubaki M; Kurokawa T; Hori H; Sakamoto J; Kitagawa T; Sone N J Inorg Biochem; 2000 Nov; 82(1-4):65-72. PubMed ID: 11132640 [TBL] [Abstract][Full Text] [Related]
46. A cytochrome bb'-type quinol oxidase in Bacillus subtilis strain 168. Azarkina N; Siletsky S; Borisov V; von Wachenfeldt C; Hederstedt L; Konstantinov AA J Biol Chem; 1999 Nov; 274(46):32810-7. PubMed ID: 10551842 [TBL] [Abstract][Full Text] [Related]
47. Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement. Belevich I; Borisov VB; Verkhovsky MI J Biol Chem; 2007 Sep; 282(39):28514-28519. PubMed ID: 17690093 [TBL] [Abstract][Full Text] [Related]
48. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. Miura H; Mogi T; Ano Y; Migita CT; Matsutani M; Yakushi T; Kita K; Matsushita K J Biochem; 2013 Jun; 153(6):535-45. PubMed ID: 23526305 [TBL] [Abstract][Full Text] [Related]
49. Electrogenic reactions of cytochrome bd. Jasaitis A; Borisov VB; Belevich NP; Morgan JE; Konstantinov AA; Verkhovsky MI Biochemistry; 2000 Nov; 39(45):13800-9. PubMed ID: 11076519 [TBL] [Abstract][Full Text] [Related]
50. Heme-heme and heme-ligand interactions in the di-heme oxygen-reducing site of cytochrome bd from Escherichia coli revealed by nanosecond absorption spectroscopy. Rappaport F; Zhang J; Vos MH; Gennis RB; Borisov VB Biochim Biophys Acta; 2010 Sep; 1797(9):1657-64. PubMed ID: 20529691 [TBL] [Abstract][Full Text] [Related]
51. A study of the stabilization of semiquinones by the Escherichia coli quinol oxidase cytochrome bd. Hastings SF; Ingledew WJ Biochem Soc Trans; 1996 Feb; 24(1):131-2. PubMed ID: 8674618 [No Abstract] [Full Text] [Related]
52. Redox-induced protein structural changes in cytochrome bo revealed by Fourier transform infrared spectroscopy and [13C]Tyr labeling. Kandori H; Nakamura H; Yamazaki Y; Mogi T J Biol Chem; 2005 Sep; 280(38):32821-6. PubMed ID: 16040612 [TBL] [Abstract][Full Text] [Related]
53. Cu XAS shows a change in the ligation of CuB upon reduction of cytochrome bo3 from Escherichia coli. Osborne JP; Cosper NJ; Stälhandske CM; Scott RA; Alben JO; Gennis RB Biochemistry; 1999 Apr; 38(14):4526-32. PubMed ID: 10194374 [TBL] [Abstract][Full Text] [Related]
54. Glutamate-89 in subunit II of cytochrome bo3 from Escherichia coli is required for the function of the heme-copper oxidase. Ma J; Tsatsos PH; Zaslavsky D; Barquera B; Thomas JW; Katsonouri A; Puustinen A; Wikström M; Brzezinski P; Alben JO; Gennis RB Biochemistry; 1999 Nov; 38(46):15150-6. PubMed ID: 10563797 [TBL] [Abstract][Full Text] [Related]
55. Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase of Escherichia coli. Hata-Tanaka A; Matsuura K; Itoh S; Anraku Y Biochim Biophys Acta; 1987 Sep; 893(2):289-95. PubMed ID: 3040093 [TBL] [Abstract][Full Text] [Related]
56. Resonance Raman detection of the Fe2+-C-N modes in heme-copper oxidases: a probe of the active site. Pinakoulaki E; Vamvouka M; Varotsis C Inorg Chem; 2004 Aug; 43(16):4907-10. PubMed ID: 15285666 [TBL] [Abstract][Full Text] [Related]
58. A novel chloride-binding site modulates the heme-copper binuclear center of the Escherichia coli bo-type ubiquinol oxidase. Hirano T; Mogi T; Tsubaki M; Hori H; Orii Y; Anraku Y J Biochem; 1997 Aug; 122(2):430-7. PubMed ID: 9378724 [TBL] [Abstract][Full Text] [Related]
59. Menaquinol oxidase activity and primary structure of cytochrome bd from the amino-acid fermenting bacterium Corynebacterium glutamicum. Kusumoto K; Sakiyama M; Sakamoto J; Noguchi S; Sone N Arch Microbiol; 2000; 173(5-6):390-7. PubMed ID: 10896219 [TBL] [Abstract][Full Text] [Related]
60. Coordination of CuB in reduced and CO-liganded states of cytochrome bo3 from Escherichia coli. Is chloride ion a cofactor? Ralle M; Verkhovskaya ML; Morgan JE; Verkhovsky MI; Wikström M; Blackburn NJ Biochemistry; 1999 Jun; 38(22):7185-94. PubMed ID: 10353829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]