These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 11133026)

  • 1. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus.
    Taylor EB; McPhail JD
    Proc Biol Sci; 2000 Dec; 267(1460):2375-84. PubMed ID: 11133026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting Holocene divergence in the anadromous-freshwater three-spined stickleback (Gasterosteus aculeatus) system.
    Raeymaekers JA; Maes GE; Audenaert E; Volckaert FA
    Mol Ecol; 2005 Apr; 14(4):1001-14. PubMed ID: 15773932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting hybridization rates between sympatric three-spined sticklebacks highlight the fragility of reproductive barriers between evolutionarily young species.
    Gow JL; Peichel CL; Taylor EB
    Mol Ecol; 2006 Mar; 15(3):739-52. PubMed ID: 16499699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History vs. habitat type: explaining the genetic structure of European nine-spined stickleback (Pungitius pungitius) populations.
    Shikano T; Shimada Y; Herczeg G; Merilä J
    Mol Ecol; 2010 Mar; 19(6):1147-61. PubMed ID: 20163545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic divergence between nine- and three-spined sticklebacks.
    Guo B; Chain FJ; Bornberg-Bauer E; Leder EH; Merilä J
    BMC Genomics; 2013 Nov; 14(1):756. PubMed ID: 24188282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae).
    Mehner T; Pohlmann K; Elkin C; Monaghan MT; Nitz B; Freyhof J
    BMC Evol Biol; 2010 Mar; 10():85. PubMed ID: 20350300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.
    Kitano J; Mori S
    Genes Genet Syst; 2016 Oct; 91(2):77-84. PubMed ID: 27301281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological selection against hybrids in natural populations of sympatric threespine sticklebacks.
    Gow JL; Peichel CL; Taylor EB
    J Evol Biol; 2007 Nov; 20(6):2173-80. PubMed ID: 17887972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites.
    Mäkinen HS; Cano JM; Merilä J
    Mol Ecol; 2006 May; 15(6):1519-34. PubMed ID: 16629808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair.
    Taylor EB; Boughman JW; Groenenboom M; Sniatynski M; Schluter D; Gow JL
    Mol Ecol; 2006 Feb; 15(2):343-55. PubMed ID: 16448405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARALLEL EVOLUTION OF LAKE-STREAM PAIRS OF THREESPINE STICKLEBACKS (GASTEROSTEUS) INFERRED FROM MITOCHONDRIAL DNA VARIATION.
    Thompson CE; Taylor EB; McPhail JD
    Evolution; 1997 Dec; 51(6):1955-1965. PubMed ID: 28565100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment.
    McCairns RJ; Bernatchez L
    Mol Ecol; 2008 Sep; 17(17):3901-16. PubMed ID: 18662229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid genetic divergence in postglacial populations of threespine stickleback (Gasterosteus aculeatus): the role of habitat type, drainage and geographical proximity.
    Reusch TB; Wegner KM; Kalbe M
    Mol Ecol; 2001 Oct; 10(10):2435-45. PubMed ID: 11703651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago.
    Kakioka R; Mori S; Kokita T; Hosoki TK; Nagano AJ; Ishikawa A; Kume M; Toyoda A; Kitano J
    BMC Evol Biol; 2020 Nov; 20(1):143. PubMed ID: 33143638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs.
    Rogers SM; Bernatchez L
    Mol Biol Evol; 2007 Jun; 24(6):1423-38. PubMed ID: 17404398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural selection and parallel speciation in sympatric sticklebacks.
    Rundle HD; Nagel L; Wenrick Boughman J; Schluter D
    Science; 2000 Jan; 287(5451):306-8. PubMed ID: 10634785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting patterns of spatial genetic structure in sympatric rock-dwelling cichlid fishes.
    Wagner CE; McCune AR
    Evolution; 2009 May; 63(5):1312-26. PubMed ID: 19154384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).
    Defaveri J; Shikano T; Shimada Y; Merilä J
    Mol Ecol; 2013 Sep; 22(18):4811-28. PubMed ID: 23947683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological speciation in marine v. freshwater fishes.
    Puebla O
    J Fish Biol; 2009 Oct; 75(5):960-96. PubMed ID: 20738594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.