These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11133039)

  • 1. Random breakage and reunion chromosome aberration formation model; an interaction-distance version based on chromatin geometry.
    Sachs RK; Levy D; Chen AM; Simpson PJ; Cornforth MN; Ingerman EA; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Dec; 76(12):1579-88. PubMed ID: 11133039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of data on chromosome aberrations produced by X rays or alpha particles and detected by fluorescence in situ hybridization.
    Chen AM; Lucas JN; Simpson PJ; Griffin CS; Savage JR; Brenner DJ; Hlatky LR; Sachs RK
    Radiat Res; 1997 Nov; 148(5 Suppl):S93-101. PubMed ID: 9355862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Underprediction of visibly complex chromosome aberrations by a recombinational-repair ('one-hit') model.
    Sachs RK; Rogoff A; Chen AM; Simpson PJ; Savage JR; Hahnfeldt P; Hlatky LR
    Int J Radiat Biol; 2000 Feb; 76(2):129-48. PubMed ID: 10716635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review: proximity effects in the production of chromosome aberrations by ionizing radiation.
    Sachs RK; Chen AM; Brenner DJ
    Int J Radiat Biol; 1997 Jan; 71(1):1-19. PubMed ID: 9020958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity effects for chromosome aberrations measured by FISH.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Int J Radiat Biol; 1996 Apr; 69(4):411-20. PubMed ID: 8627123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering of radiation-produced breaks along chromosomes: modelling the effects on chromosome aberrations.
    Sachs RK; Chen AM; Simpson PJ; Hlatky LR; Hahnfeldt P; Savage JR
    Int J Radiat Biol; 1999 Jun; 75(6):657-72. PubMed ID: 10404995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome aberrations produced by ionizing radiation: Monte Carlo simulations and chromosome painting data.
    Chen AM; Lucas JN; Hill FS; Brenner DJ; Sachs RK
    Comput Appl Biosci; 1995 Aug; 11(4):389-97. PubMed ID: 8521048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: experimental and theoretical study for high- and low-LET radiation.
    Rydberg B; Cooper B; Cooper PK; Holley WR; Chatterjee A
    Radiat Res; 2005 May; 163(5):526-34. PubMed ID: 15850414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Track structure based modelling of chromosome aberrations after photon and alpha-particle irradiation.
    Friedland W; Kundrát P
    Mutat Res; 2013 Aug; 756(1-2):213-23. PubMed ID: 23811166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No dose-dependence of DNA double-strand break misrejoining following alpha-particle irradiation.
    Kühne M; Rothkamm K; Löbrich M
    Int J Radiat Biol; 2000 Jul; 76(7):891-900. PubMed ID: 10923613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Misrejoining of double-strand breaks after X irradiation: relating moderate to very high doses by a Markov model.
    Radivoyevitch T; Hoel DG; Chen AM; Sachs RK
    Radiat Res; 1998 Jan; 149(1):59-67. PubMed ID: 9421155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of radiation induced DNA double-strand breaks in human fibroblasts by PFGE: testing the applicability of random breakage models.
    Pinto M; Prise KM; Michael BD
    Int J Radiat Biol; 2002 May; 78(5):375-88. PubMed ID: 12020428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proximity effects in chromosome aberration induction: Dependence on radiation quality, cell type and dose.
    Tello Cajiao JJ; Carante MP; Bernal Rodriguez MA; Ballarini F
    DNA Repair (Amst); 2018 Apr; 64():45-52. PubMed ID: 29494834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rejoining and misrejoining of radiation-induced chromatin breaks. II. Biophysical Model.
    Wu H; Durante M; George K; Goodwin EH; Yang TC
    Radiat Res; 1996 Mar; 145(3):281-8. PubMed ID: 8927695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using three-color chromosome painting to test chromosome aberration models.
    Lucas JN; Sachs RK
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1484-7. PubMed ID: 8434009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rejoining and misrejoining of radiation-induced chromatin breaks. I. experiments with human lymphocytes.
    Durante M; George K; Wu H; Yang TC
    Radiat Res; 1996 Mar; 145(3):274-80. PubMed ID: 8927694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency, distribution and clonality of chromosome damage in human lymphocytes by multi-color FISH.
    Johnson KL; Tucker JD; Nath J
    Mutagenesis; 1998 May; 13(3):217-27. PubMed ID: 9643579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiation induced chromosome aberrations: some biophysical considerations.
    Chadwick KH; Leenhouts HP
    Mutat Res; 1998 Aug; 404(1-2):113-7. PubMed ID: 9729318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Models of chromosome aberration induction: an example based on radiation track structure.
    Ballarini F; Ottolenghi A
    Cytogenet Genome Res; 2004; 104(1-4):149-56. PubMed ID: 15162029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of DNA fragment distributions after irradiation with photons.
    Friedland W; Jacob P; Paretzke HG; Merzagora M; Ottolenghi A
    Radiat Environ Biophys; 1999 May; 38(1):39-47. PubMed ID: 10384954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.