BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11133076)

  • 1. Design, synthesis and peroxidase-like activity of 3alpha-helix proteins covalently bound to heme.
    Obataya I; Kotaki T; Sakamoto S; Ueno A; Mihara H
    Bioorg Med Chem Lett; 2000 Dec; 10(24):2719-22. PubMed ID: 11133076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein.
    Faiella M; Maglio O; Nastri F; Lombardi A; Lista L; Hagen WR; Pavone V
    Chemistry; 2012 Dec; 18(50):15960-71. PubMed ID: 23150230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the structure of a novel artificial heme-enzyme with peroxidase-like activity: A theoretical investigation.
    Perrella F; Raucci U; Chiariello MG; Chino M; Maglio O; Lombardi A; Rega N
    Biopolymers; 2018 Aug; 109(10):e23225. PubMed ID: 30091460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of de novo cytochromes c.
    Ishida M; Dohmae N; Shiro Y; Oku T; Iizuka T; Isogai Y
    Biochemistry; 2004 Aug; 43(30):9823-33. PubMed ID: 15274636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A complex of microperoxidase with a synthetic peptide: structural and functional characterization.
    Santucci R; Picciau A; Antonini G; Campanella L
    Biochim Biophys Acta; 1995 Jul; 1250(2):183-8. PubMed ID: 7632723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of four helix bundle topology on heme binding and redox properties.
    Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Mar; 37(13):4635-43. PubMed ID: 9521784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine-heme ligation in heme-peptide complex: design based on conserved motif of catalase.
    Rai J; Raghothama S; Sahal D
    J Pept Sci; 2007 Jun; 13(6):406-12. PubMed ID: 17516588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular synthesis of de novo-designed metalloproteins for light-induced electron transfer.
    Rau HK; DeJonge N; Haehnel W
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11526-31. PubMed ID: 9751699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YhjA - An Escherichia coli trihemic enzyme with quinol peroxidase activity.
    Nóbrega CS; Devreese B; Pauleta SR
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):411-422. PubMed ID: 29550214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a novel heme protein with a non-heme globin scaffold.
    Isogai Y; Ishida M
    Biochemistry; 2009 Sep; 48(34):8136-42. PubMed ID: 19601582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of 3alpha-helix peptides forming a cavity for a fluorescent ligand.
    Obataya I; Sakamoto S; Ueno A; Mihara H
    Biopolymers; 2001 Aug; 59(2):65-71. PubMed ID: 11373720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histidine placement in de novo-designed heme proteins.
    Gibney BR; Dutton PL
    Protein Sci; 1999 Sep; 8(9):1888-98. PubMed ID: 10493590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of heme A and heme B in a designed four-helix bundle: implications for a cytochrome c oxidase maquette.
    Gibney BR; Isogai Y; Rabanal F; Reddy KS; Grosset AM; Moser CC; Dutton PL
    Biochemistry; 2000 Sep; 39(36):11041-9. PubMed ID: 10998241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of heme oxygenase activity in a library of four-helix bundle proteins: towards the de novo synthesis of functional heme proteins.
    Monien BH; Drepper F; Sommerhalter M; Lubitz W; Haehnel W
    J Mol Biol; 2007 Aug; 371(3):739-53. PubMed ID: 17585935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a structural model of membrane bound cytochrome c-550 from Bacillus subtilis.
    David PS; Dutt PS; Wathen B; Jia Z; Hill BC
    Arch Biochem Biophys; 2000 May; 377(1):22-30. PubMed ID: 10775437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle.
    Choinowski T; Blodig W; Winterhalter KH; Piontek K
    J Mol Biol; 1999 Feb; 286(3):809-27. PubMed ID: 10024453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme-linked ionization and ligand binding produce identical changes of proximal heme stereochemistry in reduced horseradish peroxidase. Evidence for existence of two protein conformations.
    Sharonov YA; Pismensky VF; Yarmola EG
    FEBS Lett; 1988 Aug; 235(1-2):63-6. PubMed ID: 3402602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized de novo designed proteins: mechanism of proton coupling to oxidation/reduction in heme protein maquettes.
    Shifman JM; Moser CC; Kalsbeck WA; Bocian DF; Dutton PL
    Biochemistry; 1998 Nov; 37(47):16815-27. PubMed ID: 9843452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.