These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11133271)

  • 21. A proton NMR relaxation study of water dynamics in bovine serum albumin nanoparticles.
    Belotti M; Martinelli A; Gianferri R; Brosio E
    Phys Chem Chem Phys; 2010 Jan; 12(2):516-22. PubMed ID: 20023830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of hydronium ion with dibenzo-18-crown-6: NMR, IR, and theoretical study.
    Kríz J; Dybal J; Makrlík E; Budka J
    J Phys Chem A; 2008 Oct; 112(41):10236-43. PubMed ID: 18811131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
    Tóth E; Bolskar RD; Borel A; González G; Helm L; Merbach AE; Sitharaman B; Wilson LJ
    J Am Chem Soc; 2005 Jan; 127(2):799-805. PubMed ID: 15643906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant.
    Lundström P; Akke M
    J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of interfacial water affected by proteins adsorbed on activated carbon.
    Alexeeva TA; Lebovka NI; Gun'ko VM; Strashko VV; Mikhalovsky SV
    J Colloid Interface Sci; 2004 Oct; 278(2):333-41. PubMed ID: 15450452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of chelate dynamics on water exchange reactions of paramagnetic aminopolycarboxylate complexes.
    Maigut J; Meier R; Zahl A; van Eldik R
    Inorg Chem; 2008 Jul; 47(13):5702-19. PubMed ID: 18510310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of the behaviour of amino acids in aqueous solution by time-domain NMR and high-resolution NMR.
    Khallouk M; Rutledge DN; Silva AM; Delgadillo I
    Magn Reson Chem; 2005 Apr; 43(4):309-15. PubMed ID: 15674820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of Na+ binding parameters by relaxation analysis of selected 23Na NMR coherences: RNA, BSA and SDS.
    Torres AM; Philp DJ; Kemp-Harper R; Garvey C; Kuchel PW
    Magn Reson Chem; 2005 Mar; 43(3):217-24. PubMed ID: 15625720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring protein concentrations by NMR spectroscopy.
    Wider G; Dreier L
    J Am Chem Soc; 2006 Mar; 128(8):2571-6. PubMed ID: 16492040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Absolute quantification of Na+ bound fraction by double-quantum filtered 23Na NMR spectroscopy.
    Mouaddab M; Foucat L; Donnat JP; Renou JP; Bonny JM
    J Magn Reson; 2007 Nov; 189(1):151-5. PubMed ID: 17897852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of osmotic pressure data for aqueous protein solutions via a multicomponent model.
    Druchok M; Kalyuzhnyi Y; Rescic J; Vlachy V
    J Chem Phys; 2006 Mar; 124(11):114902. PubMed ID: 16555916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ternary complexes between cationic GdIII chelates and anionic metabolites in aqueous solution: an NMR relaxometric study.
    Botta M; Aime S; Barge A; Bobba G; Dickins RS; Parker D; Terreno E
    Chemistry; 2003 May; 9(9):2102-9. PubMed ID: 12740859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unexpected aggregation of neutral, xylene-cored dinuclear GdIII chelates in aqueous solution.
    Costa J; Balogh E; Turcry V; Tripier R; Le Baccon M; Chuburu F; Handel H; Helm L; Tóth E; Merbach AE
    Chemistry; 2006 Sep; 12(26):6841-51. PubMed ID: 16770815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collective relaxation of protein protons at very low magnetic field: a new window on protein dynamics and aggregation.
    Luchinat C; Parigi G
    J Am Chem Soc; 2007 Feb; 129(5):1055-64. PubMed ID: 17263386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The molecular mobility of water in natural polymers: silk Bombyx mori with a low water content as studied by 1H DQF NMR].
    Rodin VV; Knight DP
    Biofizika; 2004; 49(5):800-8. PubMed ID: 15526463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of WET sequence for the detection of the ligand signals resonating close to water.
    Furihata K; Shimotakahara S; Shibusawa Y; Tashiro M
    Magn Reson Chem; 2009 Nov; 47(11):971-6. PubMed ID: 19637209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen-deuterium exchange in bovine serum albumin protein monitored by Fourier transform infrared spectroscopy, part II: kinetic studies.
    Grdadolnik J; Maréchal Y
    Appl Spectrosc; 2005 Nov; 59(11):1357-64. PubMed ID: 16316513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR relaxation and water self-diffusion studies in whey protein solutions and gels.
    Colsenet R; Mariette F; Cambert M
    J Agric Food Chem; 2005 Aug; 53(17):6784-90. PubMed ID: 16104800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative interaction of H3O+ with 1,3-alternate tetrapropoxycalix[4]arene: NMR and theoretical study.
    Kríz J; Dybal J; Makrlík E; Budka J
    Magn Reson Chem; 2008 Mar; 46(3):235-43. PubMed ID: 18236442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.