These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 11133281)

  • 1. Implementing logic gates and the Deutsch-Jozsa quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses.
    Mahesh TS; Dorai K; Arvind ; Kumar A
    J Magn Reson; 2001 Jan; 148(1):95-103. PubMed ID: 11133281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer.
    Gulde S; Riebe M; Lancaster GP; Becher C; Eschner J; Häffner H; Schmidt-Kaler F; Chuang IL; Blatt R
    Nature; 2003 Jan; 421(6918):48-50. PubMed ID: 12511949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational molecular quantum computing: basis set independence and theoretical realization of the Deutsch-Jozsa algorithm.
    Tesch CM; de Vivie-Riedle R
    J Chem Phys; 2004 Dec; 121(24):12158-68. PubMed ID: 15606234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography.
    Bonk FA; deAzevedo ER; Sarthour RS; Bulnes JD; Freitas JC; Guimarães AP; Oliveira IS; Bonagamba TJ
    J Magn Reson; 2005 Aug; 175(2):226-34. PubMed ID: 15921938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of controlled phase shift gates and Collins version of Deutsch-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases.
    Gopinath T; Kumar A
    J Magn Reson; 2008 Aug; 193(2):168-76. PubMed ID: 18514557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of non-adiabatic geometric phase for quantum computing by NMR.
    Das R; Kumar SK; Kumar A
    J Magn Reson; 2005 Dec; 177(2):318-28. PubMed ID: 16182577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits.
    Plantenberg JH; de Groot PC; Harmans CJ; Mooij JE
    Nature; 2007 Jun; 447(7146):836-9. PubMed ID: 17568742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.
    Mitra A; Ghosh A; Das R; Patel A; Kumar A
    J Magn Reson; 2005 Dec; 177(2):285-98. PubMed ID: 16172009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
    Press D; Ladd TD; Zhang B; Yamamoto Y
    Nature; 2008 Nov; 456(7219):218-21. PubMed ID: 19005550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum gate operations using midinfrared binary shaped pulses on the rovibrational states of carbon monoxide.
    Zaari RR; Brown A
    J Chem Phys; 2010 Jan; 132(1):014307. PubMed ID: 20078161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of local and global molecular quantum gates and their implementation prospects.
    Troppmann U; de Vivie-Riedle R
    J Chem Phys; 2005 Apr; 122(15):154105. PubMed ID: 15945623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of conditional gate operation using superconducting charge qubits.
    Yamamoto T; Pashkin YA; Astafiev O; Nakamura Y; Tsai JS
    Nature; 2003 Oct; 425(6961):941-4. PubMed ID: 14586464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin qubits with electrically gated polyoxometalate molecules.
    Lehmann J; Gaita-Arino A; Coronado E; Loss D
    Nat Nanotechnol; 2007 May; 2(5):312-7. PubMed ID: 18654290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal control simulation of the Deutsch-Jozsa algorithm in a two-dimensional double well coupled to an environment.
    Ndong M; Lauvergnat D; Chapuisat X; Desouter-Lecomte M
    J Chem Phys; 2007 Jun; 126(24):244505. PubMed ID: 17614562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral implementation of some quantum algorithms by one- and two-dimensional nuclear magnetic resonance.
    Das R; Kumar A
    J Chem Phys; 2004 Oct; 121(16):7601-13. PubMed ID: 15485220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental one-way quantum computing.
    Walther P; Resch KJ; Rudolph T; Schenck E; Weinfurter H; Vedral V; Aspelmeyer M; Zeilinger A
    Nature; 2005 Mar; 434(7030):169-76. PubMed ID: 15758991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and implementation of NMR quantum logic gates for two spin systems.
    Price MD; Somaroo SS; Tseng CH; Gore JC; Fahmy AF; Havel TF; Cory DG
    J Magn Reson; 1999 Oct; 140(2):371-8. PubMed ID: 10497045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling superconducting qubits via a cavity bus.
    Majer J; Chow JM; Gambetta JM; Koch J; Johnson BR; Schreier JA; Frunzio L; Schuster DI; Houck AA; Wallraff A; Blais A; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7161):443-7. PubMed ID: 17898763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.
    Saleh MF; Di Giuseppe G; Saleh BE; Teich MC
    Opt Express; 2010 Sep; 18(19):20475-90. PubMed ID: 20940940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate.
    Leibfried D; DeMarco B; Meyer V; Lucas D; Barrett M; Britton J; Itano WM; Jelenković B; Langer C; Rosenband T; Wineland DJ
    Nature; 2003 Mar; 422(6930):412-5. PubMed ID: 12660778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.