These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 11133393)

  • 1. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.
    Rösch C; Wissenbach DK; Franck U; Wendisch M; Schlink U
    Environ Pollut; 2017 Jul; 226():463-472. PubMed ID: 28456415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indoor hydrogen peroxide derived from ozone/d-limonene reactions.
    Li TH; Turpin BJ; Shields HC; Weschler CJ
    Environ Sci Technol; 2002 Aug; 36(15):3295-302. PubMed ID: 12188357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.
    Youssefi S; Waring MS
    Environ Sci Technol; 2014 Jul; 48(14):7899-908. PubMed ID: 24940869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.
    Rösch C; Wissenbach DK; von Bergen M; Franck U; Wendisch M; Schlink U
    Environ Sci Pollut Res Int; 2015 Sep; 22(18):14209-19. PubMed ID: 25966888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment.
    Fadeyi MO; Weschler CJ; Tham KW; Wu WY; Sultan ZM
    Environ Sci Technol; 2013 Apr; 47(8):3933-41. PubMed ID: 23488675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.
    Niu X; Ho SSH; Ho KF; Huang Y; Cao J; Shen Z; Sun J; Wang X; Wang Y; Lee S; Huang R
    Sci Total Environ; 2017 Feb; 579():212-220. PubMed ID: 27842959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary organic aerosol in residences: predicting its fraction of fine particle mass and determinants of formation strength.
    Waring MS
    Indoor Air; 2014 Aug; 24(4):376-89. PubMed ID: 24387324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of an ion generator on indoor air quality in a residential room.
    Waring MS; Siegel JA
    Indoor Air; 2011 Aug; 21(4):267-76. PubMed ID: 21118308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A chamber study of secondary organic aerosol formation by limonene ozonolysis.
    Chen X; Hopke PK
    Indoor Air; 2010 Aug; 20(4):320-8. PubMed ID: 20557377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of ozone-limonene reactions on perceived air quality.
    Tamás G; Weschler CJ; Toftum J; Fanger PO
    Indoor Air; 2006 Jun; 16(3):168-78. PubMed ID: 16683936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indoor fine particles: the role of terpene emissions from consumer products.
    Sarwar G; Olson DA; Corsi RL; Weschler CJ
    J Air Waste Manag Assoc; 2004 Mar; 54(3):367-77. PubMed ID: 15061618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafine particles generated from coloring with scented markers in the presence of ozone.
    Fung CC; Shu S; Zhu Y
    Indoor Air; 2014 Oct; 24(5):503-10. PubMed ID: 24547888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of air freshener emission: the potential health effects.
    Kim S; Hong SH; Bong CK; Cho MH
    J Toxicol Sci; 2015; 40(5):535-50. PubMed ID: 26354370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary organic aerosol from ozonolysis of biogenic volatile organic compounds: chamber studies of particle and reactive oxygen species formation.
    Chen X; Hopke PK; Carter WP
    Environ Sci Technol; 2011 Jan; 45(1):276-82. PubMed ID: 21121662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of an ozone-generating air purifier on indoor secondary particles in three residential dwellings.
    Hubbard HF; Coleman BK; Sarwar G; Corsi RL
    Indoor Air; 2005 Dec; 15(6):432-44. PubMed ID: 16268833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.
    Alshawa A; Russell AR; Nizkorodov SA
    Environ Sci Technol; 2007 Apr; 41(7):2498-504. PubMed ID: 17438806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The formation of ultra-fine particles during ozone-initiated oxidations with terpenes emitted from natural paint.
    Lamorena RB; Jung SG; Bae GN; Lee W
    J Hazard Mater; 2007 Mar; 141(1):245-51. PubMed ID: 16908097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.
    Singer BC; Destaillats H; Hodgson AT; Nazaroff WW
    Indoor Air; 2006 Jun; 16(3):179-91. PubMed ID: 16683937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.
    Liu X; Mason M; Krebs K; Sparks L
    Environ Sci Technol; 2004 May; 38(10):2802-12. PubMed ID: 15212253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.