These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11133427)

  • 1. Aspects of bioavailability of mercury for methylation in pure cultures of Desulfobulbus propionicus (1pr3).
    Benoit JM; Gilmour CC; Mason RP
    Appl Environ Microbiol; 2001 Jan; 67(1):51-8. PubMed ID: 11133427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3).
    Benoit JM; Gilmour CC; Mason RP
    Environ Sci Technol; 2001 Jan; 35(1):127-32. PubMed ID: 11351996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.
    King JK; Kostka JE; Frischer ME; Saunders FM
    Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments.
    Drott A; Lambertsson L; Björn E; Skyllberg U
    Environ Sci Technol; 2007 Apr; 41(7):2270-6. PubMed ID: 17438774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides.
    Zhang T; Kucharzyk KH; Kim B; Deshusses MA; Hsu-Kim H
    Environ Sci Technol; 2014 Aug; 48(16):9133-41. PubMed ID: 25007388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt limitation of growth and mercury methylation in sulfate-reducing bacteria.
    Ekstrom EB; Morel FM
    Environ Sci Technol; 2008 Jan; 42(1):93-9. PubMed ID: 18350881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Natural Organic Matter on Mercury Methylation by Desulfobulbus propionicus 1pr3.
    Moreau JW; Gionfriddo CM; Krabbenhoft DP; Ogorek JM; DeWild JF; Aiken GR; Roden EE
    Front Microbiol; 2015; 6():1389. PubMed ID: 26733947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides.
    Zhang T; Kim B; Levard C; Reinsch BC; Lowry GV; Deshusses MA; Hsu-Kim H
    Environ Sci Technol; 2012 Jul; 46(13):6950-8. PubMed ID: 22145980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Mercury Methylation across Diverse Methanogenic Archaea.
    Gilmour CC; Bullock AL; McBurney A; Podar M; Elias DA
    mBio; 2018 Apr; 9(2):. PubMed ID: 29636434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures: implications for engineered wetlands.
    Mehrotra AS; Horne AJ; Sedlak DL
    Environ Sci Technol; 2003 Jul; 37(13):3018-23. PubMed ID: 12875409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments.
    Shao D; Kang Y; Wu S; Wong MH
    Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans.
    Truong HY; Chen YW; Belzile N
    Sci Total Environ; 2013 Apr; 449():373-84. PubMed ID: 23454698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia.
    Correia RRS; Guimarães JRD
    Chemosphere; 2017 Jan; 167():438-443. PubMed ID: 27750167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Role of Sulfate-Reducing Bacteria in Mercury Methylation in Soil of the Water-Level-Fluctuating Zone of the Three Gorges Reservoir Area].
    Chen R; Chen H; Wang DY; Xiang YP; Shen H
    Huan Jing Ke Xue; 2016 Oct; 37(10):3774-3780. PubMed ID: 29964408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contributions of mercury bioavailability and microbial growth rate on net methylmercury production by anaerobic mixed cultures.
    Kucharzyk KH; Deshusses MA; Porter KA; Hsu-Kim H
    Environ Sci Process Impacts; 2015 Sep; 17(9):1568-77. PubMed ID: 26211614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exogenous and endogenous sulfide on the production and the export of methylmercury by sulfate-reducing bacteria.
    Barrouilhet S; Monperrus M; Tessier E; Khalfaoui-Hassani B; Guyoneaud R; Isaure MP; Goñi-Urriza M
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3835-3846. PubMed ID: 35953752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions.
    Graham AM; Aiken GR; Gilmour CC
    Environ Sci Technol; 2012 Mar; 46(5):2715-23. PubMed ID: 22309093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries.
    Mehrotra AS; Sedlak DL
    Environ Sci Technol; 2005 Apr; 39(8):2564-70. PubMed ID: 15884350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments.
    Bailey LT; Mitchell CPJ; Engstrom DR; Berndt ME; Coleman Wasik JK; Johnson NW
    Sci Total Environ; 2017 Feb; 580():1197-1204. PubMed ID: 28024742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.
    Luo HW; Yin X; Jubb AM; Chen H; Lu X; Zhang W; Lin H; Yu HQ; Liang L; Sheng GP; Gu B
    Environ Pollut; 2017 Jan; 220(Pt B):1359-1365. PubMed ID: 27836473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.