These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 11133867)

  • 1. Role of calcium-dependent protease(s) in globulization of isolated rat lens cortical fiber cells.
    Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):194-9. PubMed ID: 11133867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium homeostasis of isolated single cortical fibers of rat lens.
    Srivastava SK; Wang LF; Ansari NH; Bhatnagar A
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2300-12. PubMed ID: 9344353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of calcium-induced disintegrative globulization of rat lens fiber cells.
    Wang L; Bhatnagar A; Ansari NH; Dhir P; Srivastava SK
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):915-22. PubMed ID: 8603876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of osmotic changes to disintegrative globulization of single cortical fibers isolated from rat lens.
    Wang LF; Dhir P; Bhatnagar A; Srivastava SK
    Exp Eye Res; 1997 Aug; 65(2):267-75. PubMed ID: 9268595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization.
    Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-mediated disintegrative globulization of isolated ocular lens fibers mimics cataractogenesis.
    Bhatnagar A; Ansari NH; Wang L; Khanna P; Wang C; Srivastava SK
    Exp Eye Res; 1995 Sep; 61(3):303-10. PubMed ID: 7556494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolysis in human lens epithelium determined by a cell-permeable substrate.
    Karlsson JO; Andersson M; Kling-Petersen A; Sjöstrand J
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):261-4. PubMed ID: 9888455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cold preservation on intracellular calcium concentration and calpain activity in rat sinusoidal endothelial cells.
    Upadhya GA; Topp SA; Hotchkiss RS; Anagli J; Strasberg SM
    Hepatology; 2003 Feb; 37(2):313-23. PubMed ID: 12540781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A distinct membrane current in rat lens fiber cells isolated under calcium-free conditions.
    Eckert R; Donaldson P; Goldie K; Kistler J
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1280-5. PubMed ID: 9620092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calpain activity increases in hepatocytes following addition of ATP. Demonstration by a novel fluorescent approach.
    Rosser BG; Powers SP; Gores GJ
    J Biol Chem; 1993 Nov; 268(31):23593-600. PubMed ID: 8226886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells.
    Otori Y; Wei JY; Barnstable CJ
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):972-81. PubMed ID: 9579476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular calcium spikes in rat suprachiasmatic nucleus neurons induced by BAPTA-based calcium dyes.
    Hong JH; Min CH; Jeong B; Kojiya T; Morioka E; Nagai T; Ikeda M; Lee KJ
    PLoS One; 2010 Mar; 5(3):e9634. PubMed ID: 20224788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular calcium level required for calpain activation in a single myocardial cell.
    Matsumura Y; Saeki E; Otsu K; Morita T; Takeda H; Kuzuya T; Hori M; Kusuoka H
    J Mol Cell Cardiol; 2001 Jun; 33(6):1133-42. PubMed ID: 11444918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist-induced rise in intracellular calcium of lens epithelial cells: effects on the actin cytoskeleton.
    Rafferty NS; Rafferty KA; Ito E
    Exp Eye Res; 1994 Aug; 59(2):191-201. PubMed ID: 7835408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased sensitivity of lens-specific calpain Lp82 to calpastatin inhibitor.
    Nakamura Y; Fukiage C; Ma H; Shih M; Azuma M; Shearer TR
    Exp Eye Res; 1999 Aug; 69(2):155-62. PubMed ID: 10433852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes.
    Gee KR; Brown KA; Chen WN; Bishop-Stewart J; Gray D; Johnson I
    Cell Calcium; 2000 Feb; 27(2):97-106. PubMed ID: 10756976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of calcium-activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition.
    Atsma DE; Bastiaanse EM; Jerzewski A; Van der Valk LJ; Van der Laarse A
    Circ Res; 1995 Jun; 76(6):1071-8. PubMed ID: 7758161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells.
    Fujikawa K; Fukumori R; Nakamura S; Kutsukake T; Takarada T; Yoneda Y
    PLoS One; 2015; 10(5):e0127421. PubMed ID: 26010609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-dependent proteolysis in rabbit lens epithelium after oxidative stress.
    Andersson M; Sjöstrand J; Petersen A; Karlsson JO
    Ophthalmic Res; 1998; 30(3):157-67. PubMed ID: 9618719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.