BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11133950)

  • 1. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain.
    Gropp M; Strausz Y; Gross M; Glaser G
    J Bacteriol; 2001 Jan; 183(2):570-9. PubMed ID: 11133950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction.
    Battesti A; Bouveret E
    J Bacteriol; 2009 Jan; 191(2):616-24. PubMed ID: 18996989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
    Das B; Pal RR; Bag S; Bhadra RK
    Mol Microbiol; 2009 Apr; 72(2):380-98. PubMed ID: 19298370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of the N terminus of ribosomal protein L11 in regulation of the RelA protein of Escherichia coli.
    Yang X; Ishiguro EE
    J Bacteriol; 2001 Nov; 183(22):6532-7. PubMed ID: 11673421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.
    Nanamiya H; Kasai K; Nozawa A; Yun CS; Narisawa T; Murakami K; Natori Y; Kawamura F; Tozawa Y
    Mol Microbiol; 2008 Jan; 67(2):291-304. PubMed ID: 18067544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of vibrio cholerae DeltarelA DeltaspoT double mutants.
    Das B; Bhadra RK
    Arch Microbiol; 2008 Mar; 189(3):227-38. PubMed ID: 17968531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP.
    Barker MM; Gaal T; Gourse RL
    J Mol Biol; 2001 Jan; 305(4):689-702. PubMed ID: 11162085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of the N-terminal 119 amino acids of RelA with the CTD domain render growth inhibitory effects of the latter, (p)ppGpp-dependent.
    Tailor K; Sagar P; Dave K; Pohnerkar J
    Mol Genet Genomics; 2022 Mar; 297(2):601-620. PubMed ID: 35238978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of RelA-mediated (p)ppGpp formation on tRNA identity.
    Payoe R; Fahlman RP
    Biochemistry; 2011 Apr; 50(15):3075-83. PubMed ID: 21410133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae.
    Dasgupta S; Basu P; Pal RR; Bag S; Bhadra RK
    Microbiology (Reading); 2014 Sep; 160(Pt 9):1855-1866. PubMed ID: 24987103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis.
    Mechold U; Murphy H; Brown L; Cashel M
    J Bacteriol; 2002 Jun; 184(11):2878-88. PubMed ID: 12003927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis.
    Gaca AO; Kudrin P; Colomer-Winter C; Beljantseva J; Liu K; Anderson B; Wang JD; Rejman D; Potrykus K; Cashel M; Hauryliuk V; Lemos JA
    J Bacteriol; 2015 Sep; 197(18):2908-19. PubMed ID: 26124242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RelE, a global inhibitor of translation, is activated during nutritional stress.
    Christensen SK; Mikkelsen M; Pedersen K; Gerdes K
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14328-33. PubMed ID: 11717402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for polyamines in the control of ppGpp levels in Escherichia coli.
    Goldemberg SH
    Cell Mol Biol (Noisy-le-grand); 1994 Nov; 40(7):899-905. PubMed ID: 7849557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitization to acid induced by sodium ions in Escherichia coli: dependence of (p)ppGpp and cAMP and suppression of the relA-associated defect by mutations in envZ.
    Rowbury RJ; Goodson M; Lazim Z; Humphrey TJ
    Microbios; 1996; 85(344):161-77. PubMed ID: 8676748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed-relaxed response explained by hyperactivation of RelE.
    Christensen SK; Gerdes K
    Mol Microbiol; 2004 Jul; 53(2):587-97. PubMed ID: 15228536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins).
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):585-600. PubMed ID: 11545276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback control of ribosome function in Escherichia coli.
    Bremer H; Dennis P
    Biochimie; 2008 Mar; 90(3):493-9. PubMed ID: 17999920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis.
    Mechold U; Cashel M; Steiner K; Gentry D; Malke H
    J Bacteriol; 1996 Mar; 178(5):1401-11. PubMed ID: 8631718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.