These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11133993)

  • 1. Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation.
    Géminard C; Nault F; Johnstone RM; Vidal M
    J Biol Chem; 2001 Mar; 276(13):9910-6. PubMed ID: 11133993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TFR for sorting into exosomes.
    Géminard C; De Gassart A; Blanc L; Vidal M
    Traffic; 2004 Mar; 5(3):181-93. PubMed ID: 15086793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes.
    Mathew A; Bell A; Johnstone RM
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):823-30. PubMed ID: 8948438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions.
    Ballinger CA; Connell P; Wu Y; Hu Z; Thompson LJ; Yin LY; Patterson C
    Mol Cell Biol; 1999 Jun; 19(6):4535-45. PubMed ID: 10330192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70.
    Carrello A; Allan RK; Morgan SL; Owen BA; Mok D; Ward BK; Minchin RF; Toft DO; Ratajczak T
    Cell Stress Chaperones; 2004; 9(2):167-81. PubMed ID: 15497503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation.
    Davis JQ; Dansereau D; Johnstone RM; Bennett V
    J Biol Chem; 1986 Nov; 261(33):15368-71. PubMed ID: 3536900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extrusion of Na,K-ATPase and transferrin receptor with lipid raft-associated proteins in different populations of exosomes during reticulocyte maturation in dogs.
    Komatsu T; Arashiki N; Otsuka Y; Sato K; Inaba M
    Jpn J Vet Res; 2010 May; 58(1):17-27. PubMed ID: 20645582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the chaperone activities of Hsc70/Hsp40 by Hsp105alpha and Hsp105beta.
    Yamagishi N; Nishihori H; Ishihara K; Ohtsuka K; Hatayama T
    Biochem Biophys Res Commun; 2000 Jun; 272(3):850-5. PubMed ID: 10860841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity.
    Pérez-Vargas J; Romero P; López S; Arias CF
    J Virol; 2006 Apr; 80(7):3322-31. PubMed ID: 16537599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70.
    Terada K; Mori M
    J Biol Chem; 2000 Aug; 275(32):24728-34. PubMed ID: 10816573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70.
    Lüders J; Demand J; Schönfelder S; Frien M; Zimmermann R; Höhfeld J
    Biol Chem; 1998 Oct; 379(10):1217-26. PubMed ID: 9820582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Fas-associated factor 1 interacts with heat shock protein 70 and negatively regulates chaperone activity.
    Kim HJ; Song EJ; Lee YS; Kim E; Lee KJ
    J Biol Chem; 2005 Mar; 280(9):8125-33. PubMed ID: 15596450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo.
    Newmyer SL; Schmid SL
    J Cell Biol; 2001 Feb; 152(3):607-20. PubMed ID: 11157986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cdc48 can distinguish between native and non-native proteins in the absence of cofactors.
    Thoms S
    FEBS Lett; 2002 Jun; 520(1-3):107-10. PubMed ID: 12044880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage of the transferrin receptor by human granulocytes: differential proteolysis of the exosome-bound TFR.
    Johnstone RM
    J Cell Physiol; 1996 Aug; 168(2):333-45. PubMed ID: 8707869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of a soluble truncated transferrin receptor.
    Ahn J; Johnstone RM
    Blood; 1993 May; 81(9):2442-51. PubMed ID: 8481524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity.
    Gebauer M; Zeiner M; Gehring U
    FEBS Lett; 1997 Nov; 417(1):109-13. PubMed ID: 9395086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAG-1 modulates the chaperone activity of Hsp70/Hsc70.
    Takayama S; Bimston DN; Matsuzawa S; Freeman BC; Aime-Sempe C; Xie Z; Morimoto RI; Reed JC
    EMBO J; 1997 Aug; 16(16):4887-96. PubMed ID: 9305631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetratricopeptide repeat motif-mediated Hsc70-mSTI1 interaction. Molecular characterization of the critical contacts for successful binding and specificity.
    Odunuga OO; Hornby JA; Bies C; Zimmermann R; Pugh DJ; Blatch GL
    J Biol Chem; 2003 Feb; 278(9):6896-904. PubMed ID: 12482845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature interactions of the molecular chaperone Hsc70 from the eurythermal marine goby Gillichthys mirabilis.
    Place SP; Hofmann GE
    J Exp Biol; 2001 Aug; 204(Pt 15):2675-82. PubMed ID: 11533117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.