BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11134012)

  • 1. The transport activity of the Na+-Ca2+ exchanger NCX1 expressed in HEK 293 cells is sensitive to covalent modification of intracellular cysteine residues by sulfhydryl reagents.
    Ren X; Kasir J; Rahamimoff H
    J Biol Chem; 2001 Mar; 276(12):9572-9. PubMed ID: 11134012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Truncation of the C terminus of the rat brain Na(+)-Ca(2+) exchanger RBE-1 (NCX1.4) impairs surface expression of the protein.
    Kasir J; Ren X; Furman I; Rahamimoff H
    J Biol Chem; 1999 Aug; 274(35):24873-80. PubMed ID: 10455160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport activity and surface expression of the Na+-Ca2+ exchanger NCX1 are inhibited by the immunosuppressive agent cyclosporin A and by the nonimmunosuppressive agent PSC833.
    Kimchi-Sarfaty C; Kasir J; Ambudkar SV; Rahamimoff H
    J Biol Chem; 2002 Jan; 277(4):2505-10. PubMed ID: 11700317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NCX1 surface expression: a tool to identify structural elements of functional importance.
    Rahamimoff H; Ren X; Kimchi-Sarfaty C; Ambudkar S; Kasir J
    Ann N Y Acad Sci; 2002 Nov; 976():176-86. PubMed ID: 12502559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substituted cysteine accessibility of the third transmembrane domain of the creatine transporter: defining a transport pathway.
    Dodd JR; Christie DL
    J Biol Chem; 2005 Sep; 280(38):32649-54. PubMed ID: 16049011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The putative amino-terminal signal peptide of the cloned rat brain Na(+)-Ca2+ exchanger gene (RBE-1) is not mandatory for functional expression.
    Furman I; Cook O; Kasir J; Low W; Rahamimoff H
    J Biol Chem; 1995 Aug; 270(32):19120-7. PubMed ID: 7642578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium (2-sulfonatoethyl) methanethiosulfonate prevents S-nitroso-L-cysteine activation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeca.
    Lang RJ; Harvey JR; Mulholland EL
    Br J Pharmacol; 2003 Jul; 139(6):1153-63. PubMed ID: 12871834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na+/Ca2+ exchanger NCX1 has oppositely oriented reentrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca2+ affinity.
    Iwamoto T; Uehara A; Imanaga I; Shigekawa M
    J Biol Chem; 2000 Dec; 275(49):38571-80. PubMed ID: 10967097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of the mutant Ser-460-Cys implicate this site in a functionally important region of the type IIa Na(+)/P(i) cotransporter protein.
    Lambert G; Forster IC; Stange G; Biber J; Murer H
    J Gen Physiol; 1999 Nov; 114(5):637-52. PubMed ID: 10532962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholemman regulates cardiac Na+/Ca2+ exchanger by interacting with the exchanger's proximal linker domain.
    Zhang XQ; Wang J; Carl LL; Song J; Ahlers BA; Cheung JY
    Am J Physiol Cell Physiol; 2009 Apr; 296(4):C911-21. PubMed ID: 19158404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function analysis of CALX1.1, a Na+-Ca2+ exchanger from Drosophila. Mutagenesis of ionic regulatory sites.
    Dyck C; Maxwell K; Buchko J; Trac M; Omelchenko A; Hnatowich M; Hryshko LV
    J Biol Chem; 1998 May; 273(21):12981-7. PubMed ID: 9582332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel topology model of the human Na(+)/H(+) exchanger isoform 1.
    Wakabayashi S; Pang T; Su X; Shigekawa M
    J Biol Chem; 2000 Mar; 275(11):7942-9. PubMed ID: 10713111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual control of cardiac Na+ Ca2+ exchange by PIP(2): analysis of the surface membrane fraction by extracellular cysteine PEGylation.
    Shen C; Lin MJ; Yaradanakul A; Lariccia V; Hill JA; Hilgemann DW
    J Physiol; 2007 Aug; 582(Pt 3):1011-26. PubMed ID: 17540704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cardiac Na+-Ca2+ exchanger has two cytoplasmic ion permeation pathways.
    John SA; Liao J; Jiang Y; Ottolia M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7500-5. PubMed ID: 23589872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of magnesium by two isoforms of the Na+-Ca2+ exchanger expressed in CCL39 fibroblasts.
    Tashiro M; Konishi M; Iwamoto T; Shigekawa M; Kurihara S
    Pflugers Arch; 2000 Oct; 440(6):819-27. PubMed ID: 11041546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular determinants of cAMP-mediated regulation of the Na+-Ca2+ exchanger expressed in human cell lines.
    He LP; Cleemann L; Soldatov NM; Morad M
    J Physiol; 2003 May; 548(Pt 3):677-89. PubMed ID: 12626672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400.
    Iwamoto T; Kita S; Uehara A; Imanaga I; Matsuda T; Baba A; Katsuragi T
    J Biol Chem; 2004 Feb; 279(9):7544-53. PubMed ID: 14660663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new Na/Ca exchanger splicing pattern identified in situ leads to a functionally active 70kDa NH(2)-terminal protein.
    Van Eylen F; Kamagate A; Herchuelz A
    Cell Calcium; 2001 Sep; 30(3):191-8. PubMed ID: 11508998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an endogenous inhibitor of the cardiac Na+/Ca2+ exchanger, phospholemman.
    Ahlers BA; Zhang XQ; Moorman JR; Rothblum LI; Carl LL; Song J; Wang J; Geddis LM; Tucker AL; Mounsey JP; Cheung JY
    J Biol Chem; 2005 May; 280(20):19875-82. PubMed ID: 15774479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular determinants of ionic regulatory differences between brain and kidney Na+/Ca2+ exchanger (NCX1) isoforms.
    Dunn J; Elias CL; Le HD; Omelchenko A; Hryshko LV; Lytton J
    J Biol Chem; 2002 Sep; 277(37):33957-62. PubMed ID: 12118014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.