These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 11134045)
1. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. Bardwell AJ; Flatauer LJ; Matsukuma K; Thorner J; Bardwell L J Biol Chem; 2001 Mar; 276(13):10374-86. PubMed ID: 11134045 [TBL] [Abstract][Full Text] [Related]
2. A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates. Ho DT; Bardwell AJ; Abdollahi M; Bardwell L J Biol Chem; 2003 Aug; 278(35):32662-72. PubMed ID: 12788955 [TBL] [Abstract][Full Text] [Related]
3. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity. Bardwell AJ; Abdollahi M; Bardwell L Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172 [TBL] [Abstract][Full Text] [Related]
4. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Sette C; Inouye CJ; Stroschein SL; Iaquinta PJ; Thorner J Mol Biol Cell; 2000 Nov; 11(11):4033-49. PubMed ID: 11071925 [TBL] [Abstract][Full Text] [Related]
5. Signaling in the yeast pheromone response pathway: specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7. Bardwell L; Cook JG; Chang EC; Cairns BR; Thorner J Mol Cell Biol; 1996 Jul; 16(7):3637-50. PubMed ID: 8668180 [TBL] [Abstract][Full Text] [Related]
6. Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Maleri S; Ge Q; Hackett EA; Wang Y; Dohlman HG; Errede B Mol Cell Biol; 2004 Oct; 24(20):9221-38. PubMed ID: 15456892 [TBL] [Abstract][Full Text] [Related]
7. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1. Kusari AB; Molina DM; Sabbagh W; Lau CS; Bardwell L J Cell Biol; 2004 Jan; 164(2):267-77. PubMed ID: 14734536 [TBL] [Abstract][Full Text] [Related]
8. Control of MAPK signaling specificity by a conserved residue in the MEK-binding domain of the yeast scaffold protein Ste5. Schwartz MA; Madhani HD Curr Genet; 2006 Jun; 49(6):351-63. PubMed ID: 16463042 [TBL] [Abstract][Full Text] [Related]
9. Functional binding between Gbeta and the LIM domain of Ste5 is required to activate the MEKK Ste11. Feng Y; Song LY; Kincaid E; Mahanty SK; Elion EA Curr Biol; 1998 Feb; 8(5):267-78. PubMed ID: 9501067 [TBL] [Abstract][Full Text] [Related]
10. Mitogen-activated protein kinase (MAPK)-docking sites in MAPK kinases function as tethers that are crucial for MAPK regulation in vivo. Grewal S; Molina DM; Bardwell L Cell Signal; 2006 Jan; 18(1):123-34. PubMed ID: 15979847 [TBL] [Abstract][Full Text] [Related]
11. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Choi KY; Satterberg B; Lyons DM; Elion EA Cell; 1994 Aug; 78(3):499-512. PubMed ID: 8062390 [TBL] [Abstract][Full Text] [Related]
12. The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5. Kranz JE; Satterberg B; Elion EA Genes Dev; 1994 Feb; 8(3):313-27. PubMed ID: 8314085 [TBL] [Abstract][Full Text] [Related]
13. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Good M; Tang G; Singleton J; Reményi A; Lim WA Cell; 2009 Mar; 136(6):1085-97. PubMed ID: 19303851 [TBL] [Abstract][Full Text] [Related]
14. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related]
15. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5. Winters MJ; Pryciak PM Mol Biol Cell; 2019 Apr; 30(8):1037-1049. PubMed ID: 30726174 [TBL] [Abstract][Full Text] [Related]
16. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. Zhang J; Zhou B; Zheng CF; Zhang ZY J Biol Chem; 2003 Aug; 278(32):29901-12. PubMed ID: 12754209 [TBL] [Abstract][Full Text] [Related]
17. Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Bardwell L; Cook JG; Voora D; Baggott DM; Martinez AR; Thorner J Genes Dev; 1998 Sep; 12(18):2887-98. PubMed ID: 9744865 [TBL] [Abstract][Full Text] [Related]
18. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Marcus S; Polverino A; Barr M; Wigler M Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7762-6. PubMed ID: 8052657 [TBL] [Abstract][Full Text] [Related]
19. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Zhou Z; Gartner A; Cade R; Ammerer G; Errede B Mol Cell Biol; 1993 Apr; 13(4):2069-80. PubMed ID: 8455599 [TBL] [Abstract][Full Text] [Related]
20. Saccharomyces cerevisiae STE11 may contribute to the stabilities of a scaffold protein, STE5, in the pheromone signaling pathway. Kim SH; Lee SK; Choi KY Mol Cells; 1998 Apr; 8(2):130-7. PubMed ID: 9638643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]