BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 11134067)

  • 1. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis.
    Tam BM; Moritz OL; Hurd LB; Papermaster DS
    J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals.
    Lee ES; Burnside B; Flannery JG
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2150-60. PubMed ID: 16639027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments.
    Karan S; Tam BM; Moritz OL; Baehr W
    Vision Res; 2011 Nov; 51(21-22):2304-11. PubMed ID: 21945483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures.
    Tam BM; Moritz OL; Papermaster DS
    Mol Biol Cell; 2004 Apr; 15(4):2027-37. PubMed ID: 14767063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.
    Rakshit T; Senapati S; Sinha S; Whited AM; Park PS
    PLoS One; 2015; 10(10):e0141114. PubMed ID: 26492040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An outer segment localization signal at the C terminus of the photoreceptor-specific retinol dehydrogenase.
    Luo W; Marsh-Armstrong N; Rattner A; Nathans J
    J Neurosci; 2004 Mar; 24(11):2623-32. PubMed ID: 15028754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved rhodopsin/EGFP fusion protein for use in the generation of transgenic Xenopus laevis.
    Jin S; McKee TD; Oprian DD
    FEBS Lett; 2003 May; 542(1-3):142-6. PubMed ID: 12729914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones.
    Moritz OL; Peck A; Tam BM
    Gene; 2002 Oct; 298(2):173-82. PubMed ID: 12426105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupted Plasma Membrane Protein Homeostasis in a
    Ropelewski P; Imanishi Y
    J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor structure and development: analyses using GFP transgenes.
    Perkins BD; Fadool JM; Dowling JE
    Methods Cell Biol; 2004; 76():315-31. PubMed ID: 15602882
    [No Abstract]   [Full Text] [Related]  

  • 14. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death.
    Hollingsworth TJ; Gross AK
    J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical analysis of a rhodopsin photoactivatable GFP fusion as a model of G-protein coupled receptor transport.
    Sammons JD; Gross AK
    Vision Res; 2013 Dec; 93():43-8. PubMed ID: 24140958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signals governing the trafficking and mistrafficking of a ciliary GPCR, rhodopsin.
    Lodowski KH; Lee R; Ropelewski P; Nemet I; Tian G; Imanishi Y
    J Neurosci; 2013 Aug; 33(34):13621-38. PubMed ID: 23966685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.
    Lin-Jones J; Parker E; Wu M; Knox BE; Burnside B
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3614-21. PubMed ID: 12882815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods.
    Moritz OL; Tam BM; Hurd LL; Peränen J; Deretic D; Papermaster DS
    Mol Biol Cell; 2001 Aug; 12(8):2341-51. PubMed ID: 11514620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.