BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 11134067)

  • 21. Direct modulation of rod photoreceptor responsiveness through a Mel(1c) melatonin receptor in transgenic Xenopus laevis retina.
    Wiechmann AF; Vrieze MJ; Dighe R; Hu Y
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4522-31. PubMed ID: 14507901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xenopus rhodopsin promoter. Identification of immediate upstream sequences necessary for high level, rod-specific transcription.
    Mani SS; Batni S; Whitaker L; Chen S; Engbretson G; Knox BE
    J Biol Chem; 2001 Sep; 276(39):36557-65. PubMed ID: 11333267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of additional outer segment targeting signals in zebrafish rod opsin.
    Fang X; Peden AA; van Eeden FJM; Malicki JJ
    J Cell Sci; 2021 Mar; 134(6):. PubMed ID: 33589494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleotide bound to rab11a controls localization in rod cells but not interaction with rhodopsin.
    Reish NJ; Boitet ER; Bales KL; Gross AK
    J Neurosci; 2014 Nov; 34(45):14854-63. PubMed ID: 25378153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prominin-1 localizes to the open rims of outer segment lamellae in Xenopus laevis rod and cone photoreceptors.
    Han Z; Anderson DW; Papermaster DS
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):361-73. PubMed ID: 22076989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs.
    Peterson JJ; Tam BM; Moritz OL; Shelamer CL; Dugger DR; McDowell JH; Hargrave PA; Papermaster DS; Smith WC
    Exp Eye Res; 2003 May; 76(5):553-63. PubMed ID: 12697419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mislocalized rhodopsin does not require activation to cause retinal degeneration and neurite outgrowth in Xenopus laevis.
    Tam BM; Xie G; Oprian DD; Moritz OL
    J Neurosci; 2006 Jan; 26(1):203-9. PubMed ID: 16399688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism.
    Sachs K; Maretzki D; Meyer CK; Hofmann KP
    J Biol Chem; 2000 Mar; 275(9):6189-94. PubMed ID: 10692411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light regulation of rhodopsin distribution during outer segment renewal in murine rod photoreceptors.
    Rose K; Chen N; Andreev A; Chen J; Kefalov VJ; Chen J
    Curr Biol; 2024 Apr; 34(7):1492-1505.e6. PubMed ID: 38508186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration.
    Tam BM; Moritz OL
    J Neurosci; 2009 Dec; 29(48):15145-54. PubMed ID: 19955366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Submembrane assembly and renewal of rod photoreceptor cGMP-gated channel: insight into the actin-dependent process of outer segment morphogenesis.
    Nemet I; Tian G; Imanishi Y
    J Neurosci; 2014 Jun; 34(24):8164-74. PubMed ID: 24920621
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells.
    Chuang JZ; Sung CH
    J Cell Biol; 1998 Sep; 142(5):1245-56. PubMed ID: 9732285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. P23H and S334ter opsin mutations: Increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration.
    Martin RE; Ranchon-Cole I; Brush RS; Williamson CR; Hopkins SA; Li F; Anderson RE
    Mol Vis; 2004 Mar; 10():199-207. PubMed ID: 15064683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An inducible expression system to measure rhodopsin transport in transgenic Xenopus rod outer segments.
    Zhuo X; Haeri M; Solessio E; Knox BE
    PLoS One; 2013; 8(12):e82629. PubMed ID: 24349323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring of rhodopsin trafficking and mistrafficking in live photoreceptors.
    Lodowski KH; Imanishi Y
    Methods Mol Biol; 2015; 1271():293-307. PubMed ID: 25697531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A role for rhodopsin in a signal transduction cascade that regulates membrane trafficking and photoreceptor polarity.
    Deretic D
    Vision Res; 2006 Dec; 46(27):4427-33. PubMed ID: 17010408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light.
    Haeri M; Calvert PD; Solessio E; Pugh EN; Knox BE
    PLoS One; 2013; 8(11):e80059. PubMed ID: 24260336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of cholesterol in rod outer segment membranes.
    Albert AD; Boesze-Battaglia K
    Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.
    Haeri M; Knox BE
    PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.