These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11134599)

  • 1. Intra-cerebellar infusion of NMDA receptor antagonist AP5 disrupts classical eyeblink conditioning in rabbits.
    Chen G; Steinmetz JE
    Brain Res; 2000 Dec; 887(1):144-56. PubMed ID: 11134599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-methyl-D-aspartate receptors play important roles in acquisition and expression of the eyeblink conditioned response in glutamate receptor subunit delta2 mutant mice.
    Kato Y; Takatsuki K; Kawahara S; Fukunaga S; Mori H; Mishina M; Kirino Y
    Neuroscience; 2005; 135(4):1017-23. PubMed ID: 16165299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of hippocampal NMDA receptors in trace eyeblink conditioning.
    Sakamoto T; Takatsuki K; Kawahara S; Kirino Y; Niki H; Mishina M
    Brain Res; 2005 Mar; 1039(1-2):130-6. PubMed ID: 15781054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate receptors in associative eyeblink conditioning: both MK-801 and phencyclidine produce task- and dose-dependent impairments.
    Thompson LT; Disterhoft JF
    J Pharmacol Exp Ther; 1997 May; 281(2):928-40. PubMed ID: 9152403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the noncompetitive NMDA receptor antagonist MK-801 on classical eyeblink conditioning in mice.
    Takatsuki K; Kawahara S; Takehara K; Kishimoto Y; Kirino Y
    Neuropharmacology; 2001 Oct; 41(5):618-28. PubMed ID: 11587717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociaton of conditioned eye and limb responses in the cerebellar interpositus.
    Mojtahedian S; Kogan DR; Kanzawa SA; Thompson RF; Lavond DG
    Physiol Behav; 2007 May; 91(1):9-14. PubMed ID: 17320121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA receptor-dependent processes in the medial prefrontal cortex are important for acquisition and the early stage of consolidation during trace, but not delay eyeblink conditioning.
    Takehara-Nishiuchi K; Kawahara S; Kirino Y
    Learn Mem; 2005; 12(6):606-14. PubMed ID: 16322362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI.
    Attwell PJ; Rahman S; Yeo CH
    J Neurosci; 2001 Aug; 21(15):5715-22. PubMed ID: 11466443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala.
    Gewirtz JC; Davis M
    Nature; 1997 Jul; 388(6641):471-4. PubMed ID: 9242405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response.
    McCormick DA; Thompson RF
    J Neurosci; 1984 Nov; 4(11):2811-22. PubMed ID: 6502205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor antagonism in the lateral/basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress.
    Shors TJ; Mathew PR
    Learn Mem; 1998; 5(3):220-30. PubMed ID: 10454366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microinfusion of protein kinase inhibitor H7 into the cerebellum impairs the acquisition but not the retention of classical eyeblink conditioning in rabbits.
    Chen G; Steinmetz JE
    Brain Res; 2000 Feb; 856(1-2):193-201. PubMed ID: 10677626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted topography of the acquired trace-conditioned eyeblink responses in guinea pigs after suppression of cerebellar cortical inhibition to the interpositus nucleus.
    Hu B; Chen H; Feng H; Zeng Y; Yang L; Fan ZL; Wu YM; Sui JF
    Brain Res; 2010 Jun; 1337():41-55. PubMed ID: 20381463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning.
    Green JT; Steinmetz JE
    Learn Mem; 2005; 12(3):260-9. PubMed ID: 15897252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain mechanisms of extinction of the classically conditioned eyeblink response.
    Robleto K; Poulos AM; Thompson RF
    Learn Mem; 2004; 11(5):517-24. PubMed ID: 15466302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermediate cerebellum and conditioned eyeblinks. Parallel involvement in eyeblinks and tonic eyelid closure.
    Bracha V; Zhao L; Irwin K; Bloedel JR
    Exp Brain Res; 2001 Jan; 136(1):41-9. PubMed ID: 11204412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory consolidation within the central amygdala is not necessary for modulation of cerebellar learning.
    Steinmetz AB; Ng KH; Freeman JH
    Learn Mem; 2017 Jun; 24(6):225-230. PubMed ID: 28507031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response.
    McCormick DA; Steinmetz JE; Thompson RF
    Brain Res; 1985 Dec; 359(1-2):120-30. PubMed ID: 4075140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar mechanisms in eyeblink conditioning.
    Attwell PJ; Ivarsson M; Millar L; Yeo CH
    Ann N Y Acad Sci; 2002 Dec; 978():79-92. PubMed ID: 12582043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
    Steele RJ; Morris RG
    Hippocampus; 1999; 9(2):118-36. PubMed ID: 10226773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.