These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 11134893)
1. Antifibrotic action of Cu/Zn SOD is mediated by TGF-beta1 repression and phenotypic reversion of myofibroblasts. Vozenin-Brotons MC; Sivan V; Gault N; Renard C; Geffrotin C; Delanian S; Lefaix JL; Martin M Free Radic Biol Med; 2001 Jan; 30(1):30-42. PubMed ID: 11134893 [TBL] [Abstract][Full Text] [Related]
2. Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Delanian S; Martin M; Bravard A; Luccioni C; Lefaix JL Radiother Oncol; 2001 Mar; 58(3):325-31. PubMed ID: 11230895 [TBL] [Abstract][Full Text] [Related]
3. Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts. Cho N; Razipour SE; McCain ML Exp Biol Med (Maywood); 2018 Apr; 243(7):601-612. PubMed ID: 29504479 [TBL] [Abstract][Full Text] [Related]
4. Myostatin promotes a fibrotic phenotypic switch in multipotent C3H 10T1/2 cells without affecting their differentiation into myofibroblasts. Artaza JN; Singh R; Ferrini MG; Braga M; Tsao J; Gonzalez-Cadavid NF J Endocrinol; 2008 Feb; 196(2):235-49. PubMed ID: 18252947 [TBL] [Abstract][Full Text] [Related]
5. Cu-Zn super oxide dismutase as a potential antifibrotic drug for hepatitis C related fibrosis. Emerit J; Samuel D; Pavio N Biomed Pharmacother; 2006 Jan; 60(1):1-4. PubMed ID: 16297593 [TBL] [Abstract][Full Text] [Related]
6. Human xylosyltransferase-I - a new marker for myofibroblast differentiation in skin fibrosis. Faust I; Roch C; Kuhn J; Prante C; Knabbe C; Hendig D Biochem Biophys Res Commun; 2013 Jul; 436(3):449-54. PubMed ID: 23747722 [TBL] [Abstract][Full Text] [Related]
7. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. Stahnke T; Kowtharapu BS; Stachs O; Schmitz KP; Wurm J; Wree A; Guthoff RF; Hovakimyan M PLoS One; 2017; 12(2):e0172592. PubMed ID: 28231275 [TBL] [Abstract][Full Text] [Related]
8. A novel model to study renal myofibroblast formation in vitro. Grupp C; Troche I; Klass C; Köhler M; Müller GA Kidney Int; 2001 Feb; 59(2):543-53. PubMed ID: 11168936 [TBL] [Abstract][Full Text] [Related]
9. Role of apoptosis and transforming growth factor beta1 in fibroblast selection and activation in systemic sclerosis. Jelaska A; Korn JH Arthritis Rheum; 2000 Oct; 43(10):2230-9. PubMed ID: 11037882 [TBL] [Abstract][Full Text] [Related]
10. IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Simmons JG; Pucilowska JB; Keku TO; Lund PK Am J Physiol Gastrointest Liver Physiol; 2002 Sep; 283(3):G809-18. PubMed ID: 12181198 [TBL] [Abstract][Full Text] [Related]
11. Effect of transforming growth factor -β1 on α-smooth muscle actin and collagen expression in equine endometrial fibroblasts. Szóstek-Mioduchowska AZ; Lukasik K; Skarzynski DJ; Okuda K Theriogenology; 2019 Jan; 124():9-17. PubMed ID: 30321755 [TBL] [Abstract][Full Text] [Related]
12. Alteration of transforming growth factor-beta1 response involves down-regulation of Smad3 signaling in myofibroblasts from skin fibrosis. Reisdorf P; Lawrence DA; Sivan V; Klising E; Martin MT Am J Pathol; 2001 Jul; 159(1):263-72. PubMed ID: 11438473 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Contractile Function in Human Joint Capsule Myofibroblasts by Targeting the TGF-β1 and PDGF Pathways. Mattyasovszky SG; Wollstädter J; Martin A; Ritz U; Baranowski A; Ossendorf C; Rommens PM; Hofmann A PLoS One; 2016; 11(1):e0145948. PubMed ID: 26730954 [TBL] [Abstract][Full Text] [Related]
14. The pro-fibrotic properties of transforming growth factor on human fibroblasts are counteracted by caffeic acid by inhibiting myofibroblast formation and collagen synthesis. Mia MM; Bank RA Cell Tissue Res; 2016 Mar; 363(3):775-89. PubMed ID: 26453399 [TBL] [Abstract][Full Text] [Related]
15. Epigenetic regulation of myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts. Cho JS; Moon YM; Park IH; Um JY; Moon JH; Park SJ; Lee SH; Kang HJ; Lee HM Clin Exp Allergy; 2012 Jun; 42(6):872-82. PubMed ID: 22239687 [TBL] [Abstract][Full Text] [Related]
16. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Walker GA; Masters KS; Shah DN; Anseth KS; Leinwand LA Circ Res; 2004 Aug; 95(3):253-60. PubMed ID: 15217906 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta 1 modulates myofibroblastic phenotype of rat palatal fibroblasts in vitro. Yokozeki M; Moriyama K; Shimokawa H; Kuroda T Exp Cell Res; 1997 Mar; 231(2):328-36. PubMed ID: 9087174 [TBL] [Abstract][Full Text] [Related]
18. Wnt3α and transforming growth factor-β induce myofibroblast differentiation from periodontal ligament cells via different pathways. Xu H; He Y; Feng JQ; Shu R; Liu Z; Li J; Wang Y; Xu Y; Zeng H; Xu X; Xiang Z; Xue C; Bai D; Han X Exp Cell Res; 2017 Apr; 353(2):55-62. PubMed ID: 28223136 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Hashimoto S; Gon Y; Takeshita I; Matsumoto K; Maruoka S; Horie T Am J Respir Crit Care Med; 2001 Jan; 163(1):152-7. PubMed ID: 11208641 [TBL] [Abstract][Full Text] [Related]
20. Effect of simvastatin on transforming growth factor beta-1-induced myofibroblast differentiation and collagen production in nasal polyp-derived fibroblasts. Park IH; Park SJ; Cho JS; Moon YM; Moon JH; Kim TH; Lee SH; Lee HM Am J Rhinol Allergy; 2012; 26(1):7-11. PubMed ID: 22391067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]