These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1033 related articles for article (PubMed ID: 11134934)

  • 1. Use of TLS parameters to model anisotropic displacements in macromolecular refinement.
    Winn MD; Isupov MN; Murshudov GN
    Acta Crystallogr D Biol Crystallogr; 2001 Jan; 57(Pt 1):122-33. PubMed ID: 11134934
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Urzhumtsev A; Afonine PV; Adams PD
    Crystallogr Rev; 2013 Jul; 19(4):230-270. PubMed ID: 25249713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient anisotropic refinement of macromolecular structures using FFT.
    Murshudov GN; Vagin AA; Lebedev A; Wilson KS; Dodson EJ
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):247-55. PubMed ID: 10089417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating temperature-dependent anisotropic hydrogen displacements with the invariom database and a new segmented rigid-body analysis program.
    Lübben J; Bourhis LJ; Dittrich B
    J Appl Crystallogr; 2015 Dec; 48(Pt 6):1785-1793. PubMed ID: 26664341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation.
    Afonine PV; Adams PD; Urzhumtsev A
    Acta Crystallogr D Struct Biol; 2018 Jul; 74(Pt 7):621-631. PubMed ID: 29968672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. REFMAC5 for the refinement of macromolecular crystal structures.
    Murshudov GN; Skubák P; Lebedev AA; Pannu NS; Steiner RA; Nicholls RA; Winn MD; Long F; Vagin AA
    Acta Crystallogr D Biol Crystallogr; 2011 Apr; 67(Pt 4):355-67. PubMed ID: 21460454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of structural dynamics in the ribosome by TLS crystallographic refinement.
    Korostelev A; Noller HF
    J Mol Biol; 2007 Nov; 373(4):1058-70. PubMed ID: 17897673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain motions of glucosamine-6P synthase: comparison of the anisotropic displacements in the crystals and the catalytic hinge-bending rotation.
    Mouilleron S; Golinelli-Pimpaneau B
    Protein Sci; 2007 Mar; 16(3):485-93. PubMed ID: 17322533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural parameters for proteins derived from the atomic resolution (1.09 A) structure of a designed variant of the ColE1 ROP protein.
    Vlassi M; Dauter Z; Wilson KS; Kokkinidis M
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 2):1245-60. PubMed ID: 10089502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The segmented anisotropic refinement of monoclinic papain by the application of the rigid-body TLS model and comparison to bovine ribonuclease A.
    Harris GW; Pickersgill RW; Howlin B; Moss DS
    Acta Crystallogr B; 1992 Feb; 48 ( Pt 1)():67-75. PubMed ID: 1616693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting X-ray diffuse scattering from translation-libration-screw structural ensembles.
    Van Benschoten AH; Afonine PV; Terwilliger TC; Wall ME; Jackson CJ; Sauter NK; Adams PD; Urzhumtsev A; Fraser JS
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1657-67. PubMed ID: 26249347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmented anisotropic refinement of bovine ribonuclease A by the application of the rigid-body TLS model.
    Howlin B; Moss DS; Harris GW
    Acta Crystallogr A; 1989 Dec; 45 ( Pt 12)():851-61. PubMed ID: 2619965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To B or not to B: a question of resolution?
    Merritt EA
    Acta Crystallogr D Biol Crystallogr; 2012 Apr; 68(Pt 4):468-77. PubMed ID: 22505267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular viewer for the analysis of TLS rigid-body motion in macromolecules.
    Painter J; Merritt EA
    Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):465-71. PubMed ID: 15809496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-matrix least-squares refinement of lysozymes and analysis of anisotropic thermal motion.
    Harata K; Abe Y; Muraki M
    Proteins; 1998 Feb; 30(3):232-43. PubMed ID: 9517539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion.
    Painter J; Merritt EA
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):439-50. PubMed ID: 16552146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refining the macromolecular model - achieving the best agreement with the data from X-ray diffraction experiment.
    Shabalin IG; Porebski PJ; Minor W
    Crystallogr Rev; 2018; 24(4):236-262. PubMed ID: 30416256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From deep TLS validation to ensembles of atomic models built from elemental motions.
    Urzhumtsev A; Afonine PV; Van Benschoten AH; Fraser JS; Adams PD
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1668-83. PubMed ID: 26249348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of protein dynamics by X-ray diffraction.
    Ringe D; Petsko GA
    Methods Enzymol; 1986; 131():389-433. PubMed ID: 3773767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A jumping crystal predicted with molecular dynamics and analysed with TLS refinement against powder diffraction data.
    van de Streek J; Alig E; Parsons S; Vella-Zarb L
    IUCrJ; 2019 Jan; 6(Pt 1):136-144. PubMed ID: 30713711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.