BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11135198)

  • 1. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations.
    Wahlbom CF; Eliasson A; Hahn-Hägerdal B
    Biotechnol Bioeng; 2001 Feb; 72(3):289-96. PubMed ID: 11135198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heterologous reductase affects the redox balance of recombinant Saccharomyces cerevisiae.
    Meinander N; Zacchi G; Hahn-Hägerdal B
    Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():165-172. PubMed ID: 8581161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.
    Eliasson A; Christensson C; Wahlbom CF; Hahn-Hägerdal B
    Appl Environ Microbiol; 2000 Aug; 66(8):3381-6. PubMed ID: 10919795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae.
    Runquist D; Hahn-Hägerdal B; Bettiga M
    Microb Cell Fact; 2009 Sep; 8():49. PubMed ID: 19778438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture.
    Pitkänen JP; Aristidou A; Salusjärvi L; Ruohonen L; Penttilä M
    Metab Eng; 2003 Jan; 5(1):16-31. PubMed ID: 12749841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
    Wahlbom CF; Cordero Otero RR; van Zyl WH; Hahn-Hägerdal B; Jönsson LJ
    Appl Environ Microbiol; 2003 Feb; 69(2):740-6. PubMed ID: 12570990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.
    Tani T; Taguchi H; Akamatsu T
    J Biosci Bioeng; 2017 May; 123(5):613-620. PubMed ID: 28126230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase.
    Runquist D; Hahn-Hägerdal B; Bettiga M
    Appl Environ Microbiol; 2010 Dec; 76(23):7796-802. PubMed ID: 20889775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae.
    Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
    Jeppsson M; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2002 Apr; 68(4):1604-9. PubMed ID: 11916674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain.
    Pitkänen JP; Rintala E; Aristidou A; Ruohonen L; Penttilä M
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):827-37. PubMed ID: 15630585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.
    Li YC; Mitsumasu K; Gou ZX; Gou M; Tang YQ; Li GY; Wu XL; Akamatsu T; Taguchi H; Kida K
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1531-1542. PubMed ID: 26603762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.