These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11135206)

  • 1. Biomass plug development and propagation in porous media.
    Stewart TL; Fogler HS
    Biotechnol Bioeng; 2001 Feb; 72(3):353-63. PubMed ID: 11135206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-scale investigation of biomass plug development and propagation in porous media.
    Stewart TL; Scott Fogler H
    Biotechnol Bioeng; 2002 Mar; 77(5):577-88. PubMed ID: 11788955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass evolution in porous media and its effects on permeability under starvation conditions.
    Kim DS; Fogler HS
    Biotechnol Bioeng; 2000 Jul; 69(1):47-56. PubMed ID: 10820330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of exopolymers on cell morphology and culturability of Leuconostoc mesenteroides during starvation.
    Kim DS; Fogler HS
    Appl Microbiol Biotechnol; 1999 Nov; 52(6):839-44. PubMed ID: 10616718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-scale investigation of micron-size polyacrylamide elastic microspheres (MPEMs) transport and retention in saturated porous media.
    Yao C; Lei G; Cathles LM; Steenhuis TS
    Environ Sci Technol; 2014 May; 48(9):5329-35. PubMed ID: 24749927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of porous media permeability from in situ Leuconostoc mesenteroides growth and dextran production.
    Lappan RE; Fogler HS
    Biotechnol Bioeng; 1996 Apr; 50(1):6-15. PubMed ID: 18626894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: suboptimal pH growth inhibition of a lactic acid bacterium.
    Wolf BF; Fogler HS
    Biotechnol Bioeng; 2005 Jan; 89(1):96-101. PubMed ID: 15540200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pH and trace minerals on long-term starvation of Leuconostoc mesenteroides.
    Kim DS; Thomas S; Fogler HS
    Appl Environ Microbiol; 2000 Mar; 66(3):976-81. PubMed ID: 10698760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A versatile micromodel technology to explore biofilm development in porous media flows.
    Papadopoulos C; Larue AE; Toulouze C; Mokhtari O; Lefort J; Libert E; Assémat P; Swider P; Malaquin L; Davit Y
    Lab Chip; 2024 Jan; 24(2):254-271. PubMed ID: 38059908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system.
    Stoodley P; Dodds I; De Beer D; Scott HL; Boyle JD
    Biofouling; 2005; 21(3-4):161-8. PubMed ID: 16371336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assay for bacteria in porous media by diffusion-weighted NMR.
    Potter K; Kleinberg RL; Brockman FJ; McFarland EW
    J Magn Reson B; 1996 Oct; 113(1):9-15. PubMed ID: 8888588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations.
    Vogt SJ; Sanderlin AB; Seymour JD; Codd SL
    Biotechnol Bioeng; 2013 May; 110(5):1366-75. PubMed ID: 23239390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of permeability and pore size distribution of porous media with pressure.
    Chen Q; Kinzelbach W; Ye C; Yue Y
    J Environ Qual; 2002; 31(2):500-5. PubMed ID: 11931440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation during contaminant transport in porous media: V. The influence of growth and cell elution on microbial distribution.
    Yolcubal I; Pierce SA; Maier RM; Brusseau ML
    J Environ Qual; 2002; 31(6):1824-30. PubMed ID: 12469831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Leuconostoc spp. on the formation of Streptococcus mutans biofilm.
    Kang MS; Kang IC; Kim SM; Lee HC; Oh JS
    J Microbiol; 2007 Aug; 45(4):291-6. PubMed ID: 17846581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.