These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 11135669)
1. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Rudolph MJ; Wuebbens MM; Rajagopalan KV; Schindelin H Nat Struct Biol; 2001 Jan; 8(1):42-6. PubMed ID: 11135669 [TBL] [Abstract][Full Text] [Related]
2. Structural studies of molybdopterin synthase provide insights into its catalytic mechanism. Rudolph MJ; Wuebbens MM; Turque O; Rajagopalan KV; Schindelin H J Biol Chem; 2003 Apr; 278(16):14514-22. PubMed ID: 12571227 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency. Daniels JN; Wuebbens MM; Rajagopalan KV; Schindelin H Biochemistry; 2008 Jan; 47(2):615-26. PubMed ID: 18092812 [TBL] [Abstract][Full Text] [Related]
5. Role of the C-terminal Gly-Gly motif of Escherichia coli MoaD, a molybdenum cofactor biosynthesis protein with a ubiquitin fold. Schmitz J; Wuebbens MM; Rajagopalan KV; Leimkühler S Biochemistry; 2007 Jan; 46(3):909-16. PubMed ID: 17223713 [TBL] [Abstract][Full Text] [Related]
6. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Xiang S; Nichols J; Rajagopalan KV; Schindelin H Structure; 2001 Apr; 9(4):299-310. PubMed ID: 11525167 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Lake MW; Wuebbens MM; Rajagopalan KV; Schindelin H Nature; 2001 Nov; 414(6861):325-9. PubMed ID: 11713534 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of decameric fructose-6-phosphate aldolase from Escherichia coli reveals inter-subunit helix swapping as a structural basis for assembly differences in the transaldolase family. Thorell S; Schürmann M; Sprenger GA; Schneider G J Mol Biol; 2002 May; 319(1):161-71. PubMed ID: 12051943 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of beta-ketoacyl-acyl carrier protein synthase II from Synechocystis sp. at 1.54 A resolution and its relationship to other condensing enzymes. Moche M; Dehesh K; Edwards P; Lindqvist Y J Mol Biol; 2001 Jan; 305(3):491-503. PubMed ID: 11152607 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate. Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic studies of human molybdopterin synthase reaction and characterization of mutants identified in group B patients of molybdenum cofactor deficiency. Leimkuhler S; Freuer A; Araujo JA; Rajagopalan KV; Mendel RR J Biol Chem; 2003 Jul; 278(28):26127-34. PubMed ID: 12732628 [TBL] [Abstract][Full Text] [Related]
12. Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. Gutzke G; Fischer B; Mendel RR; Schwarz G J Biol Chem; 2001 Sep; 276(39):36268-74. PubMed ID: 11459846 [TBL] [Abstract][Full Text] [Related]
13. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Wang C; Xi J; Begley TP; Nicholson LK Nat Struct Biol; 2001 Jan; 8(1):47-51. PubMed ID: 11135670 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. Lake MW; Temple CA; Rajagopalan KV; Schindelin H J Biol Chem; 2000 Dec; 275(51):40211-7. PubMed ID: 10978347 [TBL] [Abstract][Full Text] [Related]
15. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans. Raczynska J; Olchowy J; Konariev PV; Svergun DI; Milewski S; Rypniewski W J Mol Biol; 2007 Sep; 372(3):672-88. PubMed ID: 17681543 [TBL] [Abstract][Full Text] [Related]
16. Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. Steinbacher S; Kaiser J; Wungsintaweekul J; Hecht S; Eisenreich W; Gerhardt S; Bacher A; Rohdich F J Mol Biol; 2002 Feb; 316(1):79-88. PubMed ID: 11829504 [TBL] [Abstract][Full Text] [Related]
17. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Wuebbens MM; Liu MT; Rajagopalan K; Schindelin H Structure; 2000 Jul; 8(7):709-18. PubMed ID: 10903949 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. Schwarz G; Schrader N; Mendel RR; Hecht HJ; Schindelin H J Mol Biol; 2001 Sep; 312(2):405-18. PubMed ID: 11554796 [TBL] [Abstract][Full Text] [Related]
19. Two crystal structures of the cytoplasmic molybdate-binding protein ModG suggest a novel cooperative binding mechanism and provide insights into ligand-binding specificity. Delarbre L; Stevenson CE; White DJ; Mitchenall LA; Pau RN; Lawson DM J Mol Biol; 2001 May; 308(5):1063-79. PubMed ID: 11352591 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the Pyrococcus horikoshii isopropylmalate isomerase small subunit provides insight into the dual substrate specificity of the enzyme. Yasutake Y; Yao M; Sakai N; Kirita T; Tanaka I J Mol Biol; 2004 Nov; 344(2):325-33. PubMed ID: 15522288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]