These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 11137677)

  • 21. When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm.
    SanMiguel I; Corral MJ; Escera C
    J Cogn Neurosci; 2008 Jul; 20(7):1131-45. PubMed ID: 18284343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shielding cognition from nociception with working memory.
    Legrain V; Crombez G; Plaghki L; Mouraux A
    Cortex; 2013; 49(7):1922-34. PubMed ID: 23026759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring the switching of the focus of attention within working memory: A combined event-related potential and behavioral study.
    Frenken M; Berti S
    Int J Psychophysiol; 2018 Apr; 126():30-41. PubMed ID: 29476873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aging and repetition priming for targets and distracters in a working memory task.
    Caggiano DM; Jiang Y; Parasuraman R
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2006; 13(3-4):552-73. PubMed ID: 16887789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does Contralateral Delay Activity Reflect Working Memory Storage or the Current Focus of Spatial Attention within Visual Working Memory?
    Berggren N; Eimer M
    J Cogn Neurosci; 2016 Dec; 28(12):2003-2020. PubMed ID: 27458749
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct neural mechanisms of individual and developmental differences in VSTM capacity.
    Astle DE; Harvey H; Stokes M; Mohseni H; Nobre AC; Scerif G
    Dev Psychobiol; 2014 May; 56(4):601-10. PubMed ID: 23775219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of similarity on the distraction resistance of visual working memory representation.
    Sun Y; Wang L; Sun N; Li S
    Psychophysiology; 2023 Jan; 60(1):e14153. PubMed ID: 35843992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents.
    Spronk M; Vogel EK; Jonkman LM
    PLoS One; 2012; 7(8):e42262. PubMed ID: 22927923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Remembered but unused: the accessory items in working memory that do not guide attention.
    Peters JC; Goebel R; Roelfsema PR
    J Cogn Neurosci; 2009 Jun; 21(6):1081-91. PubMed ID: 18702589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A case-matched study of neurophysiological correlates to attention/working memory in people with somatic hypervigilance.
    Berryman C; Wise V; Stanton TR; McFarlane A; Moseley GL
    J Clin Exp Neuropsychol; 2017 Feb; 39(1):84-99. PubMed ID: 27554310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.
    Hecht M; Thiemann U; Freitag CM; Bender S
    Neuroimage; 2016 Jan; 125():964-977. PubMed ID: 26571051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Working memory processes show different degrees of lateralization: evidence from event-related potentials.
    Talsma D; Wijers AA; Klaver P; Mulder G
    Psychophysiology; 2001 May; 38(3):425-39. PubMed ID: 11352131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behind the scenes: how visual memory load biases selective attention during processing of visual streams.
    Klaver P; Talsma D
    Psychophysiology; 2013 Nov; 50(11):1133-46. PubMed ID: 24015992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reward-related distracters and working memory filtering.
    Ward RT; Miskovich TA; Stout DM; Bennett KP; Lotfi S; Larson CL
    Psychophysiology; 2019 Oct; 56(10):e13402. PubMed ID: 31206739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Representations in human visual short-term memory: an event-related brain potential study.
    Klaver P; Smid HG; Heinze HJ
    Neurosci Lett; 1999 Jun; 268(2):65-8. PubMed ID: 10400079
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual working memory capacity and stimulus categories: a behavioral and electrophysiological investigation.
    Diamantopoulou S; Poom L; Klaver P; Talsma D
    Exp Brain Res; 2011 Apr; 209(4):501-13. PubMed ID: 21340444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the effect of pain on demands for attentional resources using ERPs.
    Houlihan ME; McGrath PJ; Connolly JF; Stroink G; Allen Finley G; Dick B; Phi TT
    Int J Psychophysiol; 2004 Jan; 51(2):181-7. PubMed ID: 14693366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The electrophysiological effect of working memory load on involuntary attention in an auditory-visual distraction paradigm: an ERP study.
    Lv JY; Wang T; Qiu J; Feng SH; Tu S; Wei DT
    Exp Brain Res; 2010 Aug; 205(1):81-6. PubMed ID: 20628735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between working memory and visual perception: an ERP/EEG study.
    Agam Y; Sekuler R
    Neuroimage; 2007 Jul; 36(3):933-42. PubMed ID: 17512216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.