These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11138030)

  • 21. Propagating fronts in the complex Ginzburg-Landau equation generate fixed-width bands of plane waves.
    Smith MJ; Sherratt JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046209. PubMed ID: 19905417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction and breakup of inwardly rotating spiral waves in an inhomogeneous oscillatory medium.
    Xie F; Weiss JN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016107. PubMed ID: 17358224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonant excitation and nonlinear evolution of waves in the equatorial waveguide in the presence of the mean current.
    Reznik G; Zeitlin V
    Phys Rev Lett; 2007 Aug; 99(6):064501. PubMed ID: 17930833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of target and spiral wave propagation in single cells.
    Babloyantz A
    Chaos; 1994 Sep; 4(3):473-476. PubMed ID: 12780122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-delay autosynchronization control of defect turbulence in the cubic-quintic complex Ginzburg-Landau equation.
    Gonpe Tafo JB; Nana L; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032911. PubMed ID: 24125329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reversal of spiral waves in an oscillatory system caused by an inhomogeneity.
    Li TC; Li BW
    Chaos; 2013 Sep; 23(3):033130. PubMed ID: 24089966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatially extended dislocations produced by the dispersive Swift-Hohenberg equation.
    Balch B; Shipman PD; Bradley RM
    Phys Rev E; 2023 Apr; 107(4-1):044214. PubMed ID: 37198825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking.
    Kao HC; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026211. PubMed ID: 22463303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaotic one-dimensional domains induced by periodic potentials in normal-dispersion fiber lasers.
    Urzagasti D; Vargas BA; Quispe-Flores LA
    Chaos; 2017 Oct; 27(10):103116. PubMed ID: 29092411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable stationary and breathing holes at the onset of a weakly inverted instability.
    Descalzi O; Brand HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):055202. PubMed ID: 16383677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spiral wave dynamics in oscillatory inhomogeneous media.
    Hendrey M; Ott E; Antonsen TM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5 Pt A):4943-53. PubMed ID: 11031537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Traveling waves and breathers in an excitatory-inhibitory neural field.
    Folias SE
    Phys Rev E; 2017 Mar; 95(3-1):032210. PubMed ID: 28415249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turing pattern formation in the Brusselator system with nonlinear diffusion.
    Gambino G; Lombardo MC; Sammartino M; Sciacca V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissipative solitons in the discrete Ginzburg-Landau equation with saturable nonlinearity.
    Abdullaev FK; Salerno M
    Phys Rev E; 2018 May; 97(5-1):052208. PubMed ID: 29906973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of parametric forcing on the nonequilibrium dynamics of wave patterns.
    Abarzhi SI; Desjardins O; Nepomnyashchy A; Pitsch H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046208. PubMed ID: 17500979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inwardly rotating spiral wave breakup in oscillatory reaction-diffusion media.
    Xie F; Xie D; Weiss JN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026107. PubMed ID: 17025503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ionic wave propagation and collision in an excitable circuit model of microtubules.
    Guemkam Ghomsi P; Tameh Berinyoh JT; Moukam Kakmeni FM
    Chaos; 2018 Feb; 28(2):023106. PubMed ID: 29495667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waves and instabilities of viscoelastic fluid film flowing down an inclined wavy bottom.
    Mukhopadhyay S; Mukhopadhyay A
    Phys Rev E; 2020 Aug; 102(2-1):023117. PubMed ID: 32942486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ising-Bloch transition for the parametric Ginzburg-Landau equation with rapidly varying perturbations.
    Michaelis D; Abdullaev FKh; Darmanyan SA; Lederer F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056205. PubMed ID: 16089632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lattice Boltzmann model for the complex Ginzburg-Landau equation.
    Zhang J; Yan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066705. PubMed ID: 20866542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.