These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11138178)

  • 1. Effect of compression on the global optimization of atomic clusters.
    Doye JP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8753-61. PubMed ID: 11138178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Funnel hopping: Searching the cluster potential energy surface over the funnels.
    Cheng L; Feng Y; Yang J; Yang J
    J Chem Phys; 2009 Jun; 130(21):214112. PubMed ID: 19508061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahedral global minimum for the 98-atom Lennard-Jones cluster.
    Leary RH; Doye JP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt A):R6320-2. PubMed ID: 11970625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetrisation schemes for global optimisation of atomic clusters.
    Oakley MT; Johnston RL; Wales DJ
    Phys Chem Chem Phys; 2013 Mar; 15(11):3965-76. PubMed ID: 23389762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global optimization of binary Lennard-Jones clusters using three perturbation operators.
    Ye T; Xu R; Huang W
    J Chem Inf Model; 2011 Mar; 51(3):572-7. PubMed ID: 21332209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways.
    Schaefer B; Mohr S; Amsler M; Goedecker S
    J Chem Phys; 2014 Jun; 140(21):214102. PubMed ID: 24907985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basin Hopping Genetic Algorithm for Global Optimization of PtCo Clusters.
    Huang R; Bi JX; Li L; Wen YH
    J Chem Inf Model; 2020 Apr; 60(4):2219-2228. PubMed ID: 32203652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global optimization of Lennard-Jones clusters by a parallel fast annealing evolutionary algorithm.
    Cai W; Jiang H; Shao X
    J Chem Inf Comput Sci; 2002; 42(5):1099-103. PubMed ID: 12376996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global potential energy minima of C60(H2O)n clusters.
    Hernández-Rojas J; Bretón J; Gomez Llorente JM; Wales DJ
    J Phys Chem B; 2006 Jul; 110(27):13357-62. PubMed ID: 16821854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Structure of Adamantane Clusters: Atomistic vs. Coarse-Grained Predictions From Global Optimization.
    Hernández-Rojas J; Calvo F
    Front Chem; 2019; 7():573. PubMed ID: 31475136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clever and efficient method for searching optimal geometries of lennard-jones clusters.
    Takeuchi H
    J Chem Inf Model; 2006; 46(5):2066-70. PubMed ID: 16995737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo.
    Paleico ML; Behler J
    J Chem Phys; 2020 Mar; 152(9):094109. PubMed ID: 33480732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles.
    Rondina GG; Da Silva JL
    J Chem Inf Model; 2013 Sep; 53(9):2282-98. PubMed ID: 23957311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metastability, spectrum, and eigencurrents of the Lennard-Jones-38 network.
    Cameron MK
    J Chem Phys; 2014 Nov; 141(18):184113. PubMed ID: 25399138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel method for geometry optimization of molecular clusters: application to benzene clusters.
    Takeuchi H
    J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The performance of minima hopping and evolutionary algorithms for cluster structure prediction.
    Schönborn SE; Goedecker S; Roy S; Oganov AR
    J Chem Phys; 2009 Apr; 130(14):144108. PubMed ID: 19368430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbiased fuzzy global optimization of Lennard-Jones clusters for N ≤ 1000.
    Yu K; Wang X; Chen L; Wang L
    J Chem Phys; 2019 Dec; 151(21):214105. PubMed ID: 31822070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Structural Comparison Method to Promote Exploration of the Potential Energy Surface in the Global Optimization of Nanoclusters.
    Weal GR; McIntyre SM; Garden AL
    J Chem Inf Model; 2021 Apr; 61(4):1732-1744. PubMed ID: 33844537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural relaxation in atomic clusters: master equation dynamics.
    Miller MA; Doye JP; Wales DJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3701-18. PubMed ID: 11970203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Optimization Algorithms in Clusters.
    Srivastava R
    Front Chem; 2021; 9():637286. PubMed ID: 33777900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.