These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 11138182)
1. Replica-exchange algorithm and results for the three-dimensional random field ising model. Machta J; Newman ME; Chayes LB Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8782-9. PubMed ID: 11138182 [TBL] [Abstract][Full Text] [Related]
2. Multicritical behavior in a random-field Ising model under a continuous-field probability distribution. Salmon OR; Crokidakis N; Nobre FD J Phys Condens Matter; 2009 Feb; 21(5):056005. PubMed ID: 21817311 [TBL] [Abstract][Full Text] [Related]
3. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems. Nakamura T Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399 [TBL] [Abstract][Full Text] [Related]
4. Correlations between the dynamics of parallel tempering and the free-energy landscape in spin glasses. Yucesoy B; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012104. PubMed ID: 23410280 [TBL] [Abstract][Full Text] [Related]
5. Comparative Monte Carlo efficiency by Monte Carlo analysis. Rubenstein BM; Gubernatis JE; Doll JD Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207 [TBL] [Abstract][Full Text] [Related]
6. Mean field theory of the swap Monte Carlo algorithm. Ikeda H; Zamponi F; Ikeda A J Chem Phys; 2017 Dec; 147(23):234506. PubMed ID: 29272924 [TBL] [Abstract][Full Text] [Related]
7. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model. Ferrenberg AM; Xu J; Landau DP Phys Rev E; 2018 Apr; 97(4-1):043301. PubMed ID: 29758673 [TBL] [Abstract][Full Text] [Related]
8. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional ising model in the fixed-magnetization ensemble: A monte carlo study. Blote HW; Heringa JR; Tsypin MM Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):77-82. PubMed ID: 11088437 [TBL] [Abstract][Full Text] [Related]
10. Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models. Chatterjee A; Chakrabarti BK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046113. PubMed ID: 12786442 [TBL] [Abstract][Full Text] [Related]
11. Simulated-tempering replica-exchange method for the multidimensional version. Mitsutake A J Chem Phys; 2009 Sep; 131(9):094105. PubMed ID: 19739847 [TBL] [Abstract][Full Text] [Related]
12. Comparing Monte Carlo methods for finding ground states of Ising spin glasses: Population annealing, simulated annealing, and parallel tempering. Wang W; Machta J; Katzgraber HG Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013303. PubMed ID: 26274303 [TBL] [Abstract][Full Text] [Related]
13. Effect of increasing disorder on domains of the 2d Coulomb glass. Bhandari P; Malik V J Phys Condens Matter; 2017 Dec; 29(48):485402. PubMed ID: 29072577 [TBL] [Abstract][Full Text] [Related]
14. Ising spin glass in a random network with a Gaussian random field. Erichsen R; Silveira A; Magalhaes SG Phys Rev E; 2021 Feb; 103(2-1):022133. PubMed ID: 33736097 [TBL] [Abstract][Full Text] [Related]
15. Universality of the Ising and the S=1 model on Archimedean lattices: a Monte Carlo determination. Malakis A; Gulpinar G; Karaaslan Y; Papakonstantinou T; Aslan G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031146. PubMed ID: 22587077 [TBL] [Abstract][Full Text] [Related]
16. Replica-Permutation Method with the Suwa-Todo Algorithm beyond the Replica-Exchange Method. Itoh SG; Okumura H J Chem Theory Comput; 2013 Jan; 9(1):570-81. PubMed ID: 26589055 [TBL] [Abstract][Full Text] [Related]
17. Dynamical replica analysis of disordered Ising spin systems on finitely connected random graphs. Hatchett JP; Pérez Castillo I; Coolen AC; Skantzos NS Phys Rev Lett; 2005 Sep; 95(11):117204. PubMed ID: 16197042 [TBL] [Abstract][Full Text] [Related]
18. Magnetization plateaus in the antiferromagnetic Ising chain with single-ion anisotropy and quenched disorder. Neto MA; de Sousa JR; Branco NS Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052153. PubMed ID: 26066165 [TBL] [Abstract][Full Text] [Related]
19. High-resolution Monte Carlo study of the order-parameter distribution of the three-dimensional Ising model. Xu J; Ferrenberg AM; Landau DP Phys Rev E; 2020 Feb; 101(2-1):023315. PubMed ID: 32168706 [TBL] [Abstract][Full Text] [Related]
20. Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model using Monte Carlo simulations. Szukowski G; Kamieniarz G; Musiał G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031124. PubMed ID: 18517346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]