These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 11138799)

  • 1. The role of echolocation in the hunting of terrestrial prey--new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra.
    Schmidt S; Hanke S; Pillat J
    J Comp Physiol A; 2000 Oct; 186(10):975-88. PubMed ID: 11138799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Echolocation behaviour of Megaderma lyra during typical orientation situations and while hunting aerial prey: a field study.
    Schmidt S; Yapa W; Grunwald JE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):403-12. PubMed ID: 20582420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis.
    Geipel I; Jung K; Kalko EK
    Proc Biol Sci; 2013 Mar; 280(1754):20122830. PubMed ID: 23325775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
    Razak KA
    Brain Behav Evol; 2018; 91(2):97-108. PubMed ID: 29874652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis.
    Faure PA; Barclay RM
    J Comp Physiol A; 1994 May; 174(5):651-60. PubMed ID: 8006859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mysterious Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey.
    Jones G; Webb PI; Sedgeley JA; O'Donnell CF
    J Exp Biol; 2003 Dec; 206(Pt 23):4209-16. PubMed ID: 14581591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A whispering bat that screams: bimodal switch of foraging guild from gleaning to aerial hawking in the desert long-eared bat.
    Hackett TD; Korine C; Holderied MW
    J Exp Biol; 2014 Sep; 217(Pt 17):3028-32. PubMed ID: 24948640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability.
    Stidsholt L; Hubancheva A; Greif S; Goerlitz HR; Johnson M; Yovel Y; Madsen PT
    Elife; 2023 Apr; 12():. PubMed ID: 37070239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bat sonar and wing morphology predict species vertical niche.
    Roemer C; Coulon A; Disca T; Bas Y
    J Acoust Soc Am; 2019 May; 145(5):3242. PubMed ID: 31153342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit.
    Vanderelst D; Peremans H
    J Theor Biol; 2018 Nov; 456():305-314. PubMed ID: 30102889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemprich's long-eared bat (Otonycteris hemprichii) as a predator of scorpions: whispering echolocation, passive gleaning and prey selection.
    Holderied M; Korine C; Moritz T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):425-33. PubMed ID: 21086132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.
    Chiu C; Reddy PV; Xian W; Krishnaprasad PS; Moss CF
    J Exp Biol; 2010 Oct; 213(Pt 19):3348-56. PubMed ID: 20833928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.
    Russo D; Jones G; Arlettaz R
    J Exp Biol; 2007 Jan; 210(Pt 1):166-76. PubMed ID: 17170159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.
    Falk B; Kasnadi J; Moss CF
    J Exp Biol; 2015 Nov; 218(Pt 22):3678-88. PubMed ID: 26582935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats.
    Fullard JH; Ratcliffe JM; Guignion C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jul; 191(7):605-18. PubMed ID: 15886992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory biology: listening in the dark for echoes from silent and stationary prey.
    Jones G
    Curr Biol; 2013 Mar; 23(6):R249-51. PubMed ID: 23518059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.
    Falk B; Jakobsen L; Surlykke A; Moss CF
    J Exp Biol; 2014 Dec; 217(Pt 24):4356-64. PubMed ID: 25394632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an analytic perception of multiharmonic sounds in the bat, Megaderma lyra, and its possible role for echo spectral analysis.
    Krumbholz K; Schmidt S
    J Acoust Soc Am; 2001 Apr; 109(4):1705-16. PubMed ID: 11325138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Echolocation call structure and intensity in five species of insectivorous bats.
    Waters DA; Jones G
    J Exp Biol; 1995 Feb; 198(Pt 2):475-89. PubMed ID: 7699316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight on how fishing bats discern prey and adjust their mechanic and sensorial features during the attack sequence.
    Aizpurua O; Alberdi A; Aihartza J; Garin I
    Sci Rep; 2015 Jul; 5():12392. PubMed ID: 26196094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.