BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 11138842)

  • 1. The influence of chronic inhibition of nitric oxide synthesis on contractile and relaxant properties of rat carotid and mesenteric arteries.
    Heijenbrok FJ; Mathy MJ; Pfaffendorf M; van Zwieten PA
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Dec; 362(6):504-11. PubMed ID: 11138842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-adrenoceptor agonist mediated relaxation of rat isolated resistance arteries: a role for the endothelium and nitric oxide.
    Graves J; Poston L
    Br J Pharmacol; 1993 Mar; 108(3):631-7. PubMed ID: 8096781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of the hyporeactivity induced by in vivo endothelial injury in the rat carotid artery by chronic treatment with fish oil.
    Joly GA; Schini VB; Hughes H; Vanhoutte PM
    Br J Pharmacol; 1995 May; 115(2):255-60. PubMed ID: 7670727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of portal hypertension on responsiveness of rat mesenteric artery and aorta.
    Cawley T; Geraghty J; Osborne H; Docherty JR
    Br J Pharmacol; 1995 Feb; 114(4):791-6. PubMed ID: 7773539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdependence of contractile responses of rat small mesenteric arteries on nitric oxide and cyclo-oxygenase and lipoxygenase products of arachidonic acid.
    Wu XC; Johns E; Michael J; Richards NT
    Br J Pharmacol; 1994 Jun; 112(2):360-8. PubMed ID: 7521254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasoconstrictor responses after neo-intima formation and endothelial removal in the rabbit carotid artery.
    De Meyer GR; Bult H; Ustünes L; Kockx M; Jordaens FH; Zonnekeyn LL; Herman AG
    Br J Pharmacol; 1994 Jun; 112(2):471-6. PubMed ID: 7521257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of perfusion rate and NG-nitro-L-arginine methyl ester on cirazoline- and KCl-induced responses in the perfused mesenteric arterial bed of rats.
    Adeagbo AS; Tabrizchi R; Triggle CR
    Br J Pharmacol; 1994 Jan; 111(1):13-20. PubMed ID: 7912152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tone dependent nitric oxide production in ovine vessels in vitro.
    Bansal V; Toga H; Raj JU
    Respir Physiol; 1993 Aug; 93(2):249-60. PubMed ID: 8210762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial contractions induced by cumulative addition of calcium in hypertensive and normotensive rats: influence of endothelium.
    Kähönen M; Arvola P; Wu X; Pörsti I
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jun; 349(6):627-36. PubMed ID: 7969514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-dependent vascular activities of endothelin-like peptides in the isolated superior mesenteric arterial bed of the rat.
    Douglas SA; Hiley CR
    Br J Pharmacol; 1990 Sep; 101(1):81-8. PubMed ID: 2282471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of potassium channels and nitric oxide in the relaxant effects elicited by beta-adrenoceptor agonists on hypoxic vasoconstriction in the isolated perfused lung of the rat.
    Dumas JP; Goirand F; Bardou M; Dumas M; Rochette L; Advenier C; Giudicelli JF
    Br J Pharmacol; 1999 May; 127(2):421-8. PubMed ID: 10385242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenoceptor-stimulated endothelium-dependent relaxation in porcine intrapulmonary arteries.
    Tulloh RM; Dyamenahalli U; Stuart-Smith K; Haworth SG
    Pulm Pharmacol; 1994 Oct; 7(5):299-303. PubMed ID: 7626916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of endothelium-derived NO in the basal tone and in the vasodilator responses to muscarinic agonists in the rat isolated mesenteric arterial bed.
    Baisch AL; Larrue J; Freslon JL
    Fundam Clin Pharmacol; 1994; 8(1):54-63. PubMed ID: 8181796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha
    Mishra RC; Rahman MM; Davis MJ; Wulff H; Hill MA; Braun AP
    Physiol Rep; 2018 May; 6(9):e13703. PubMed ID: 29756401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide induced vasorelaxation in rat mesenteric small arteries precontracted with noradrenaline is endothelium dependent and mediated by nitric oxide.
    Carr P; Graves JE; Poston L
    Pflugers Arch; 1993 May; 423(3-4):343-5. PubMed ID: 7686647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the vasoconstrictor response to KCL by nitric oxide synthesis inhibition: a comparison with noradrenaline.
    Amerini S; Mantelli L; Ledda F
    Pharmacol Res; 1995; 31(3-4):175-81. PubMed ID: 7543202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of nitric oxide and potassium channels in endothelium-dependent vasodilation in SHR.
    Hendriks MG; Pfaffendorf M; van Zwieten PA
    Blood Press; 1993 Sep; 2(3):233-43. PubMed ID: 8205319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute simvastatin increases endothelial nitric oxide synthase phosphorylation via AMP-activated protein kinase and reduces contractility of isolated rat mesenteric resistance arteries.
    Rossoni LV; Wareing M; Wenceslau CF; Al-Abri M; Cobb C; Austin C
    Clin Sci (Lond); 2011 Nov; 121(10):449-58. PubMed ID: 21671887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditions permitting suppression of stretch-induced and vasoconstrictor tone by basal nitric oxide activity in porcine cerebral artery.
    Wallis SJ; Martin W
    Br J Pharmacol; 2000 Jun; 130(3):567-74. PubMed ID: 10821784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.