BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11139181)

  • 1. Influence of heavy metals on methane oxidation in tropical rice soils.
    Mohanty SR; Bharati K; Deepa N; Rao VR; Adhya TK
    Ecotoxicol Environ Saf; 2000 Nov; 47(3):277-84. PubMed ID: 11139181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of heavy metals on methane production in tropical rice soils.
    Mishra SR; Bharati K; Sethunathan N; Adhya TK
    Ecotoxicol Environ Saf; 1999 Sep; 44(1):129-36. PubMed ID: 10499999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butachlor inhibits production and oxidation of methane in tropical rice soils under flooded condition.
    Mohanty SR; Nayak DR; Babu YJ; Adhya TK
    Microbiol Res; 2004; 159(3):193-201. PubMed ID: 15462519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of salinity on methanogenesis and associated microflora in tropical rice soils.
    Pattnaik P; Mishra SR; Bharati K; Mohanty SR; Sethunathan N; Adhya TK
    Microbiol Res; 2000 Sep; 155(3):215-20. PubMed ID: 11061190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of soil type and plant age on the population size of rhizospheric methanotrophs and their activities in tropical rice soils.
    Vishwakarma P; Dubey SK
    J Basic Microbiol; 2007 Aug; 47(4):351-7. PubMed ID: 17647202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of changes in methanogenesis and associated microflora in a flooded alluvial soil following repeated application of dicyandiamide, a nitrification inhibitor.
    Mohanty SR; Bharati K; Rao VR; Adhya TK
    Microbiol Res; 2009; 164(1):71-80. PubMed ID: 17207983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.
    Nayak DR; Babu YJ; Datta A; Adhya TK
    J Environ Qual; 2007; 36(6):1577-84. PubMed ID: 17940256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methane oxidation in freely and poorly drained grassland soils and effects of cattle urine application.
    Li Z; Kelliher FM
    J Environ Qual; 2007; 36(5):1241-8. PubMed ID: 17636284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An empirical model of soil chemical properties that regulate methane production in Japanese rice paddy soils.
    Cheng W; Yagi K; Akiyama H; Nishimura S; Sudo S; Fumoto T; Hasegawa T; Hartley AE; Megonigal JP
    J Environ Qual; 2007; 36(6):1920-5. PubMed ID: 17965395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundance and activity of uncultured methanotrophic bacteria involved in the consumption of atmospheric methane in two forest soils.
    Kolb S; Knief C; Dunfield PF; Conrad R
    Environ Microbiol; 2005 Aug; 7(8):1150-61. PubMed ID: 16011752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates.
    Stein VB; Hettiaratchi JP
    Environ Technol; 2001 Jan; 22(1):101-11. PubMed ID: 11286050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms.
    He R; Ruan A; Jiang C; Shen DS
    Bioresour Technol; 2008 Oct; 99(15):7192-9. PubMed ID: 18294841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methane oxidation in lead-contaminated mineral soils under different moisture levels.
    Wnuk E; Walkiewicz A; Bieganowski A
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):25346-25354. PubMed ID: 28933004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ.
    Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R
    ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of marsh soils with heavy metals by effect of anthropic pollution.
    Vega FA; Covelo EF; Cerqueira B; Andrade ML
    J Hazard Mater; 2009 Oct; 170(2-3):1056-63. PubMed ID: 19525065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation.
    Stern JC; Chanton J; Abichou T; Powelson D; Yuan L; Escoriza S; Bogner J
    Waste Manag; 2007; 27(9):1248-58. PubMed ID: 17005386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions.
    Walkiewicz A; Bulak P; BrzeziƄska M; Wnuk E; Bieganowski A
    Environ Pollut; 2016 Jun; 213():403-411. PubMed ID: 26946175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methanotrophic production of extracellular polysaccharide in landfill cover soils.
    Chiemchaisri W; Wu JS; Visvanathan C
    Water Sci Technol; 2001; 43(6):151-8. PubMed ID: 11381961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of copper concentration on methane emission from rice soils.
    Jiao Y; Huang Y; Zong L; Zheng X; Sass RL
    Chemosphere; 2005 Jan; 58(2):185-93. PubMed ID: 15571750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.