BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11139293)

  • 1. The rates of molecular evolution in rodent and primate mitochondrial DNA.
    Weinreich DM
    J Mol Evol; 2001 Jan; 52(1):40-50. PubMed ID: 11139293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Synonymous Sites in Primates and Rodents Functionally Constrained?
    Price N; Graur D
    J Mol Evol; 2016 Jan; 82(1):51-64. PubMed ID: 26563252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA.
    Rand DM; Kann LM
    Genetica; 1998; 102-103(1-6):393-407. PubMed ID: 9720291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On transition bias in mitochondrial genes of pocket gophers.
    Xia X; Hafner MS; Sudman PD
    J Mol Evol; 1996 Jul; 43(1):32-40. PubMed ID: 8660427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. More radical amino acid replacements in primates than in rodents: support for the evolutionary role of effective population size.
    Hughes AL; Friedman R
    Gene; 2009 Jul; 440(1-2):50-6. PubMed ID: 19332110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences.
    Seo TK; Kishino H; Thorne JL
    Mol Biol Evol; 2004 Jul; 21(7):1201-13. PubMed ID: 15014159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of eutherian cytochrome c oxidase subunit II: heterogeneous rates of protein evolution and altered interaction with cytochrome c.
    Adkins RM; Honeycutt RL; Disotell TR
    Mol Biol Evol; 1996 Dec; 13(10):1393-404. PubMed ID: 8952084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase.
    Schmidt TR; Wu W; Goodman M; Grossman LI
    Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins?
    Andrews TD; Jermiin LS; Easteal S
    J Mol Evol; 1998 Sep; 47(3):249-57. PubMed ID: 9732451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different rates of substitution may produce different phylogenies of the eutherian mammals.
    Holmes EC
    J Mol Evol; 1991 Sep; 33(3):209-15. PubMed ID: 1757992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis.
    Li WH; Ellsworth DL; Krushkal J; Chang BH; Hewett-Emmett D
    Mol Phylogenet Evol; 1996 Feb; 5(1):182-7. PubMed ID: 8673286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated rates of nonsynonymous substitution in island birds.
    Johnson KP; Seger J
    Mol Biol Evol; 2001 May; 18(5):874-81. PubMed ID: 11319271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tempo and mode of synonymous substitutions in mitochondrial DNA of primates.
    Adachi J; Hasegawa M
    Mol Biol Evol; 1996 Jan; 13(1):200-8. PubMed ID: 8583892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.
    Rand DM; Kann LM
    Mol Biol Evol; 1996 Jul; 13(6):735-48. PubMed ID: 8754210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synonymous nucleotide substitution rates in mammalian genes: implications for the molecular clock and the relationship of mammalian orders.
    Bulmer M; Wolfe KH; Sharp PM
    Proc Natl Acad Sci U S A; 1991 Jul; 88(14):5974-8. PubMed ID: 2068073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes.
    Pupko T; Galtier N
    Proc Biol Sci; 2002 Jul; 269(1498):1313-6. PubMed ID: 12079652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.