These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11139629)

  • 1. RNA-templated DNA ligation for transcript analysis.
    Nilsson M; Antson DO; Barbany G; Landegren U
    Nucleic Acids Res; 2001 Jan; 29(2):578-81. PubMed ID: 11139629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canonical nucleosides can be utilized by T4 DNA ligase as universal template bases at ligation junctions.
    Alexander RC; Johnson AK; Thorpe JA; Gevedon T; Testa SM
    Nucleic Acids Res; 2003 Jun; 31(12):3208-16. PubMed ID: 12799448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scanning mutagenesis using T4 DNA ligase and short degenerate DNA oligonucleotides containing tri-nucleotide mismatches.
    Cherepanov AV; de Vries S
    J Biochem; 2002 Jul; 132(1):143-7. PubMed ID: 12097171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fidelity of RNA templated end-joining by chlorella virus DNA ligase and a novel iLock assay with improved direct RNA detection accuracy.
    Krzywkowski T; Nilsson M
    Nucleic Acids Res; 2017 Oct; 45(18):e161. PubMed ID: 29048593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-directed ligation of tethered mononucleotides by t4 DNA ligase for kinase ribozyme selection.
    Nickens DG; Bardiya N; Patterson JT; Burke DH
    PLoS One; 2010 Aug; 5(8):e12368. PubMed ID: 20811490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Interaction of short oligonucleotides derivatives with nucleic acids. VI. Discrimination of mismatch-containing complexes upon ligation of a short oligonucleotide tandem on DNA template].
    Pyshnyĭ DV; Krivenko AA; Lokhov SG; Ivanova EM; Dymshits GM; Zarytova VF
    Bioorg Khim; 1998 Jan; 24(1):32-7. PubMed ID: 9551199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase.
    Wu DY; Wallace RB
    Gene; 1989; 76(2):245-54. PubMed ID: 2753355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Making AppDNA using T4 DNA ligase.
    Chiuman W; Li Y
    Bioorg Chem; 2002 Oct; 30(5):332-49. PubMed ID: 12485593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general strategy for highly sensitive analysis of genetic biomarkers at single-base resolution with ligase-based isothermally exponential amplification.
    Wang H; Wang H; Sun Y; Liu X; Liu Y; Wang C; Zhang P; Li Z
    Talanta; 2020 May; 212():120754. PubMed ID: 32113533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel sensitive and selective ligation-based ATP assay using a molecular beacon.
    Ma C; Tang Z; Wang K; Yang X; Tan W
    Analyst; 2013 May; 138(10):3013-7. PubMed ID: 23563079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological small molecules by ligation-nicking coupled reaction-mediated signal amplification.
    Chen F; Zhao Y; Qi L; Fan C
    Biosens Bioelectron; 2013 Sep; 47():218-24. PubMed ID: 23584226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.
    Lohman GJ; Zhang Y; Zhelkovsky AM; Cantor EJ; Evans TC
    Nucleic Acids Res; 2014 Feb; 42(3):1831-44. PubMed ID: 24203707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic mechanism of the Mg2+-dependent nucleotidyl transfer catalyzed by T4 DNA and RNA ligases.
    Cherepanov AV; de Vries S
    J Biol Chem; 2002 Jan; 277(3):1695-704. PubMed ID: 11687591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus.
    Tong J; Barany F; Cao W
    Nucleic Acids Res; 2000 Mar; 28(6):1447-54. PubMed ID: 10684941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly-efficient T4 DNA ligase-based SNP analysis using a ligation fragment containing a modified nucleobase at the end.
    Jang EK; Yang M; Pack SP
    Chem Commun (Camb); 2015 Aug; 51(66):13090-3. PubMed ID: 26186468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro ligation of oligodeoxynucleotides containing C8-oxidized purine lesions using bacteriophage T4 DNA ligase.
    Zhao X; Muller JG; Halasyam M; David SS; Burrows CJ
    Biochemistry; 2007 Mar; 46(12):3734-44. PubMed ID: 17323928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA ligases.
    Nichols NM; Tabor S; McReynolds LA
    Curr Protoc Mol Biol; 2008 Oct; Chapter 3():Unit3.15. PubMed ID: 18972386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced detection and distinction of RNA by enzymatic probe ligation.
    Nilsson M; Barbany G; Antson DO; Gertow K; Landegren U
    Nat Biotechnol; 2000 Jul; 18(7):791-3. PubMed ID: 10888852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-templated single-base mutation detection based on T4 DNA ligase and reverse molecular beacon.
    Tang H; Yang X; Wang K; Tan W; Li H; He L; Liu B
    Talanta; 2008 Jun; 75(5):1388-93. PubMed ID: 18585229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligating DNA with DNA.
    Sreedhara A; Li Y; Breaker RR
    J Am Chem Soc; 2004 Mar; 126(11):3454-60. PubMed ID: 15025472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.