These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11140461)

  • 1. Epitope spreading: a mechanism for progression of autoimmune disease.
    Tuohy VK; Kinkel RP
    Arch Immunol Ther Exp (Warsz); 2000; 48(5):347-51. PubMed ID: 11140461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regression and spreading of self-recognition during the development of autoimmune demyelinating disease.
    Tuohy VK; Yu M; Yin L; Kawczak JA; Kinkel PR
    J Autoimmun; 1999 Aug; 13(1):11-20. PubMed ID: 10441163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis.
    Tuohy VK; Yu M; Yin L; Kawczak JA; Johnson JM; Mathisen PM; Weinstock-Guttman B; Kinkel RP
    Immunol Rev; 1998 Aug; 164():93-100. PubMed ID: 9795767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis.
    Tuohy VK; Yu M; Yin L; Kawczak JA; Kinkel RP
    J Exp Med; 1999 Apr; 189(7):1033-42. PubMed ID: 10190894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cell reconstitution of autoimmune T cell repertoires.
    Edling AE; Tuohy VK
    J Neuroimmunol; 2005 Dec; 169(1-2):126-36. PubMed ID: 16199096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis.
    Miller SD; McMahon EJ; Schreiner B; Bailey SL
    Ann N Y Acad Sci; 2007 Apr; 1103():179-91. PubMed ID: 17376826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Activation of T cells in experimental autoimmune encephalomyelitis and multiple sclerosis].
    Rodríguez-Rodríguez Y; Suárez-Luis I
    Rev Neurol; 2003 Apr 1-15; 36(7):649-52. PubMed ID: 12666047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell vaccination in multiple sclerosis.
    Achiron A; Mandel M
    Autoimmun Rev; 2004 Jan; 3(1):25-32. PubMed ID: 14871646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theiler's virus-mediated autoimmunity: local presentation of CNS antigens and epitope spreading.
    Tompkins SM; Fuller KG; Miller SD
    Ann N Y Acad Sci; 2002 Apr; 958():26-38. PubMed ID: 12021081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting monocyte recruitment in CNS autoimmune disease.
    Izikson L; Klein RS; Luster AD; Weiner HL
    Clin Immunol; 2002 May; 103(2):125-31. PubMed ID: 12027417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-cell vaccination in multiple sclerosis: update on clinical application and mode of action.
    Hellings N; Raus J; Stinissen P
    Autoimmun Rev; 2004 Jun; 3(4):267-75. PubMed ID: 15246022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation and control of pathogenic T cells in OSP/claudin-11-induced EAE in SJL/J mice are dominated by their focused recognition of a single epitopic residue (OSP58M).
    Kaushansky N; Eisenstein M; Oved JH; Ben-Nun A
    Int Immunol; 2008 Nov; 20(11):1439-49. PubMed ID: 18801757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis.
    El Behi M; Dubucquoi S; Lefranc D; Zéphir H; De Seze J; Vermersch P; Prin L
    Immunol Lett; 2005 Jan; 96(1):11-26. PubMed ID: 15585303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that Fas and FasL contribute to the pathogenesis of experimental autoimmune encephalomyelitis.
    Dittel BN
    Arch Immunol Ther Exp (Warsz); 2000; 48(5):381-8. PubMed ID: 11140465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler's virus-induced demyelinating disease.
    Fuller KG; Olson JK; Howard LM; Croxford JL; Miller SD
    Methods Mol Med; 2004; 102():339-61. PubMed ID: 15286394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infections and autoimmune diseases.
    Bach JF
    J Autoimmun; 2005; 25 Suppl():74-80. PubMed ID: 16278064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innate and adaptive immune requirements for induction of autoimmune demyelinating disease by molecular mimicry.
    Olson JK; Ludovic Croxford J; Miller SD
    Mol Immunol; 2004 Feb; 40(14-15):1103-8. PubMed ID: 15036915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple pathways to induction of virus-induced autoimmune demyelination: lessons from Theiler's virus infection.
    Miller SD; Olson JK; Croxford JL
    J Autoimmun; 2001 May; 16(3):219-27. PubMed ID: 11334486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection from autoimmunity by DNA vaccination against T-cell receptor.
    Buch T; Waisman A
    Methods Mol Med; 2006; 127():269-80. PubMed ID: 16988460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation.
    Zozulya AL; Wiendl H
    Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.