BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11140690)

  • 1. Controlled growth factor release from synthetic extracellular matrices.
    Lee KY; Peters MC; Anderson KW; Mooney DJ
    Nature; 2000 Dec 21-28; 408(6815):998-1000. PubMed ID: 11140690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of VEGF delivery techniques on collateral-dependent microvascular reactivity.
    Sellke FW; Tofukuji M; Laham RJ; Li J; Hariawala MD; Bunting S; Simons M
    Microvasc Res; 1998 Mar; 55(2):175-8. PubMed ID: 9521892
    [No Abstract]   [Full Text] [Related]  

  • 3. Alginate hydrogels as biomaterials.
    Augst AD; Kong HJ; Mooney DJ
    Macromol Biosci; 2006 Aug; 6(8):623-33. PubMed ID: 16881042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphatic versus blood vascular endothelial growth factors and receptors in humans.
    Partanen TA; Paavonen K
    Microsc Res Tech; 2001 Oct; 55(2):108-21. PubMed ID: 11596156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.
    Keshaw H; Forbes A; Day RM
    Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan.
    Lee KW; Yoon JJ; Lee JH; Kim SY; Jung HJ; Kim SJ; Joh JW; Lee HH; Lee DS; Lee SK
    Transplant Proc; 2004 Oct; 36(8):2464-5. PubMed ID: 15561282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collagenous matrices as release carriers of exogenous growth factors.
    Kanematsu A; Yamamoto S; Ozeki M; Noguchi T; Kanatani I; Ogawa O; Tabata Y
    Biomaterials; 2004 Aug; 25(18):4513-20. PubMed ID: 15046942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor.
    Cai S; Liu Y; Zheng Shu X; Prestwich GD
    Biomaterials; 2005 Oct; 26(30):6054-67. PubMed ID: 15958243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds.
    Balakrishnan B; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(18):3941-51. PubMed ID: 15626441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drilling for oxygen: angiogenesis involves proteolysis of the extracellular matrix.
    Libby P; Schönbeck U
    Circ Res; 2001 Aug; 89(3):195-7. PubMed ID: 11485968
    [No Abstract]   [Full Text] [Related]  

  • 11. Polymeric system for dual growth factor delivery.
    Richardson TP; Peters MC; Ennett AB; Mooney DJ
    Nat Biotechnol; 2001 Nov; 19(11):1029-34. PubMed ID: 11689847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication.
    Rajagopalan S; Mohler ER; Lederman RJ; Mendelsohn FO; Saucedo JF; Goldman CK; Blebea J; Macko J; Kessler PD; Rasmussen HS; Annex BH
    Circulation; 2003 Oct; 108(16):1933-8. PubMed ID: 14504183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth.
    Fahmy RG; Dass CR; Sun LQ; Chesterman CN; Khachigian LM
    Nat Med; 2003 Aug; 9(8):1026-32. PubMed ID: 12872165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating drug efficacy and toxicology in three dimensions: using synthetic extracellular matrices in drug discovery.
    Prestwich GD
    Acc Chem Res; 2008 Jan; 41(1):139-48. PubMed ID: 17655274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic extracellular matrices for tissue engineering and regeneration.
    Silva EA; Mooney DJ
    Curr Top Dev Biol; 2004; 64():181-205. PubMed ID: 15563948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of proteinase-induced matrix degradation on the release of VEGF from heparinized collagen matrices.
    Yao C; Roderfeld M; Rath T; Roeb E; Bernhagen J; Steffens G
    Biomaterials; 2006 Mar; 27(8):1608-16. PubMed ID: 16183114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of inducible nitric oxide synthase results in reductions in wound vascular endothelial growth factor expression, granulation tissue formation, and local perfusion.
    Howdieshell TR; Webb WL; Sathyanarayana ; McNeil PL
    Surgery; 2003 May; 133(5):528-37. PubMed ID: 12773981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice.
    Veikkola T; Jussila L; Makinen T; Karpanen T; Jeltsch M; Petrova TV; Kubo H; Thurston G; McDonald DM; Achen MG; Stacker SA; Alitalo K
    EMBO J; 2001 Mar; 20(6):1223-31. PubMed ID: 11250889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable polyglycolide endovascular coils promote wall thickening and drug delivery in a rat aneurysm model.
    Abrahams JM; Forman MS; Grady MS; Diamond SL
    Neurosurgery; 2001 Nov; 49(5):1187-93; discussion 1193-5. PubMed ID: 11846912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rho family GTPases regulate VEGF-stimulated endothelial cell motility.
    Soga N; Namba N; McAllister S; Cornelius L; Teitelbaum SL; Dowdy SF; Kawamura J; Hruska KA
    Exp Cell Res; 2001 Sep; 269(1):73-87. PubMed ID: 11525641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.