BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11140768)

  • 1. Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes.
    Bath BD; Michael DJ; Trafton BJ; Joseph JD; Runnels PL; Wightman RM
    Anal Chem; 2000 Dec; 72(24):5994-6002. PubMed ID: 11140768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High temporal resolution measurements of dopamine with carbon nanotube yarn microelectrodes.
    Jacobs CB; Ivanov IN; Nguyen MD; Zestos AG; Venton BJ
    Anal Chem; 2014 Jun; 86(12):5721-7. PubMed ID: 24832571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity.
    Heien ML; Phillips PE; Stuber GD; Seipel AT; Wightman RM
    Analyst; 2003 Dec; 128(12):1413-9. PubMed ID: 14737224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines.
    Hermans A; Seipel AT; Miller CE; Wightman RM
    Langmuir; 2006 Feb; 22(5):1964-9. PubMed ID: 16489775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration.
    Venton BJ; Troyer KP; Wightman RM
    Anal Chem; 2002 Feb; 74(3):539-46. PubMed ID: 11838672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast-scan cyclic voltammetry of 5-hydroxytryptamine.
    Jackson BP; Dietz SM; Wightman RM
    Anal Chem; 1995 Mar; 67(6):1115-20. PubMed ID: 7717525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine transport into a single cell in a picoliter vial.
    Troyer KP; Wightman RM
    Anal Chem; 2002 Oct; 74(20):5370-5. PubMed ID: 12403595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific oxygen-containing functional groups on the carbon surface underlie an enhanced sensitivity to dopamine at electrochemically pretreated carbon fiber microelectrodes.
    Roberts JG; Moody BP; McCarty GS; Sombers LA
    Langmuir; 2010 Jun; 26(11):9116-22. PubMed ID: 20166750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals of fast-scan cyclic voltammetry for dopamine detection.
    Venton BJ; Cao Q
    Analyst; 2020 Feb; 145(4):1158-1168. PubMed ID: 31922176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Static and Dynamic Measurement of Dopamine Adsorption in Carbon Fiber Microelectrodes Using Electrochemical Impedance Spectroscopy.
    Rivera-Serrano N; Pagan M; Colón-Rodríguez J; Fuster C; Vélez R; Almodovar-Faria J; Jiménez-Rivera C; Cunci L
    Anal Chem; 2018 Feb; 90(3):2293-2301. PubMed ID: 29260558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser Treated Carbon Nanotube Yarn Microelectrodes for Rapid and Sensitive Detection of Dopamine
    Yang C; Trikantzopoulos E; Nguyen MD; Jacobs CB; Wang Y; Mahjouri-Samani M; Ivanov IN; Venton BJ
    ACS Sens; 2016 May; 1(5):508-515. PubMed ID: 27430021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry.
    Mendoza A; Asrat T; Liu F; Wonnenberg P; Zestos AG
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltammetric detection of 5-hydroxytryptamine release in the rat brain.
    Hashemi P; Dankoski EC; Petrovic J; Keithley RB; Wightman RM
    Anal Chem; 2009 Nov; 81(22):9462-71. PubMed ID: 19827792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry.
    Keithley RB; Takmakov P; Bucher ES; Belle AM; Owesson-White CA; Park J; Wightman RM
    Anal Chem; 2011 May; 83(9):3563-71. PubMed ID: 21473572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry.
    Kume-Kick J; Rice ME
    J Neurosci Methods; 1998 Oct; 84(1-2):55-62. PubMed ID: 9821634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrogenase-modified carbon-fiber microelectrodes for the measurement of neurotransmitter dynamics. 1. NADH voltammetry.
    Kuhr WG; Barrett VL; Gagnon MR; Hopper P; Pantano P
    Anal Chem; 1993 Mar; 65(5):617-22. PubMed ID: 8095777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.